Pegylated peptides. V. Carboxy-terminal PEGylated analogs of growth hormone-releasing factor (GRF) display enhanced duration of biological activity in vivo |
| |
Authors: | RM Campbell EP Heimer M Ahmad HG Eisenbeis TJ Lambros Y Lee RW Miller PR Stricker AM Felix |
| |
Affiliation: | Roche Research Center, Hoffmann-La Roche Inc., Nutley, New Jersey, USA. Robert_M.Campbell@roche.com |
| |
Abstract: | In the present study, human growth hormone-releasing factor (hGRF) and analogs were successfully pegylated at the carboxy-terminus using a novel solid- and solution-phase strategy. Following synthesis, these pegylated hGRF analogs were evaluated for in vitro and in vivo biological activity. Specifically, hGRF (1-29)-NH2, [Ala15]-hGRF (1-29)-NH2, [desNH2Tyr1, D-Ala2, Ala15]-hGRF(1-29)-NH2 and [His1, Val2, Gln8, Ala15, Leu27]-hGRF(1-32)-OH were each C-terminally extended using a Gly-Gly-Cys-NH2 spacer (previously demonstrated not to alter intrinsic biological activity), and then monopegylated via coupling to an activated dithiopyridyl-PEG reagent. PEG moieties of 750, 2000, 5000 or 10,000 molecular weight (MW) were examined to determine the effect of polymer weight on activity. Initial biological evaluations in vitro revealed that all C-terminally pegylated hGRF analogs retained high growth hormone (GH)-releasing potencies, regardless of the MW of PEG polymer employed. Two of these pegylated hGRF analogs, [desNH2Tyr1, D-Ala2, Ala15]-hGRF (1-29)-Gly-Gly-Cys(NH2)-S-Nle-PEG5000 and [His1, Val2, Gln8, Ala15, Leu27]-hGRF(1-32)-Gly-Cys(NH2)-S-Nle-PEG5000, were subsequently evaluated in both pig and mouse models and found to be highly potent (in vivo potency range = 12-55-fold that of native hGRF). Relative to their non-pegylated counterparts, these two pegylated hGRF analogs exhibited enhanced duration of activity. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|