首页 | 本学科首页   官方微博 | 高级检索  
     


An evaluation of catchment-scale phosphorus mitigation using load apportionment modelling
Authors:Greene S  Taylor D  McElarney Y R  Foy R H  Jordan P
Affiliation:
  • a School of Natural Sciences, Trinity College, University of Dublin, Dublin, Ireland
  • b Agri-Environment Branch (AEB), Agri-Food and Biosciences Institute (AFBI), Belfast, Northern Ireland
  • c Agricultural Catchments Programme, Teagasc, Johnstown Castle, Wexford, Ireland and School of Environmental Sciences, University of Ulster, Coleraine, Northern Ireland
  • Abstract:Functional relationships between phosphorus (P) discharge and concentration mechanisms were explored using a load apportionment model (LAM) developed for use in a freshwater catchment in Ireland with fourteen years of data (1995-2008). The aim of model conceptualisation was to infer changes in point and diffuse sources from catchment P loading during P mitigation, based upon a dataset comprising geospatial and water quality data from a 256 km2 lake catchment in an intensively farmed drumlin region of the midlands of Ireland. The model was calibrated using river total P (TP), molybdate reactive P (MRP) and runoff data from seven subcatchments. Temporal and spatial heterogeneity of P sources existed within and between subcatchments; these were attributed to differences in agricultural intensity, soil type and anthropogenically-sourced effluent P loading. Catchment rivers were sensitive to flow regime, which can result in eutrophication of rivers during summer and lake enrichment from frequent flood events. For one sewage impacted river, the LAM estimated that point sourced P contributed up to of 90% of annual MRP load delivered during a hydrological year and in this river point P sources dominated flows up to 92% of days. In the other rivers, despite diffuse P forming a majority of the annual P exports, point sources of P dominated flows for up to 64% of a hydrological year. The calibrated model demonstrated that lower P export rates followed specific P mitigation measures. The LAM estimated up to 80% decreases in point MRP load after enhanced P removal at waste water treatments plants in urban subcatchments and the implementation of septic tank and agricultural bye-laws in rural subcatchments. The LAM approach provides a way to assess the long-term effectiveness of further measures to reduce P loadings in EU (International) River Basin Districts and subcatchments.
    Keywords:Diffuse  Load apportionment  Mitigation  Phosphorus  Point  Pollution  Water framework directive
    本文献已被 ScienceDirect PubMed 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号