首页 | 本学科首页   官方微博 | 高级检索  
     


Air pollution and meteorological processes in the growing dryland city of Urumqi (Xinjiang, China)
Authors:Mamtimin Buhalqem  Meixner Franz X
Affiliation:
  • a Max Planck Institute for Chemistry, Biogeochemistry Dept., P.O. Box 3060, D-55020 Mainz, Germany
  • b Institute of Geography Science and Tourism, Xinjiang Normal University, Urumqi, Xinjiang, PR China
  • c Department of Physics University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe
  • Abstract:Seven years (2000-2006) of monthly PM10 (particulate matter, d ≤ 10 μm), SO2, and NO2 concentrations are reported for Urumqi, the capital of Xinjiang in NW China. Considerably high mean annual concentrations have been observed, which ranged between 150 and 240 μg m− 3 (PM10), 31 and 50 μg m− 3 (NO2), and 49 and 160 μg m− 3 (SO2). The shapes of seasonal variation of all pollutants were remarkably similar; however, winter/summer ratios of concentrations were quite different for PM10 (2-3) and NO2 (≈ 4) compared to SO2 (up to 30). Very high consumption rates of fossil fuels for energy generation and domestic heating are mainly responsible for high annual pollution levels, as well as the (very) high winter/summer ratios. Detailed analysis of the 2000-2006 records of Urumqi's meteorological data resulted in inter-annual and seasonal frequency distributions of (a) (surface) inversion events, (b) heights of surface inversions, (c) stability classes of Urumqi's boundary layer, and (d) the “Air Stagnation Index (ASI)”. Urumqi's boundary layer is shown to be characterized by high mean annual and seasonal frequencies of (surface) inversions and by the dominance of stable dispersion classes. A further outcome of the meteorological analysis is the proof of Urumqi's strong diurnal wind system, which might have particularly contributed to the stabilization of the nocturnal boundary layer. Annual and seasonal variations of pollutant's concentrations are discussed in the context of occurrences of inversions, boundary layer, stability classes, and ASI. The trend of Urumqi's air pollution indicates a strong increase of mean annual concentrations 2000-2003, followed by a slight increase during 2003-2006. These are in strong contrast to (a) the growth of Urumqi's fleet of motor vehicles and (b) to the growing number of stable regimes of Urumqi's boundary layer climate during same period. It is concluded that the (regional and) local administrative technical countermeasures have efficiently lowered Urumqi's air pollution levels.
    Keywords:Air pollution PM10 SO2 NO2  Annual and seasonal variations  Atmospheric stability classes  Inversion layers  Air Stagnation Index  Mountain-valley breeze
    本文献已被 ScienceDirect PubMed 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号