首页 | 本学科首页   官方微博 | 高级检索  
     


Phase-transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2Li1/2)TiO3-(Bi1/2K1/2)TiO3 lead-free ferroelectric ceramics.
Authors:Yuji Hiruma  Hajime Nagata  Tadashi Takenaka
Affiliation:Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan. hirumay@takenaka.ee.noda.tus.ac.jp
Abstract:The phase-transition temperatures and piezoelectric properties of x(Bi(1/2)Na(1/2))TiO3-y(Bi(1/2)Li(1/2))TiO3-z(Bi(1/2)K(1/2))TiO3 x + y + z = 1] (abbreviated as BNLKT100(y)-100(z)) ceramics were investigated. These ceramics were prepared using a conventional ceramic fabrication process. The phase-transition temperatures such as depolarization temperatures T(d), rhombohedraltetragonal phase transition temperature T(R-T), and dielectric-maximum temperature T(m) were determined using electrical measurements such as dielectric and piezoelectric properties. The X-ray powder diffraction patterns of BNLKT100(y)-100(z)) show the morphotropic phase boundary (MPB) between rhombohedral and tetragonal at approximately z = 0.20, and the piezoelectric properties show the maximum at the MPB. The electromechanical coupling factor k(33), piezoelectric constant d(33) and T(d) of BNLKT4-20 and BNLKT8-20 were 0.603, 176 pC/N, and 171 degrees C, and 0.590, 190 pC/N, and 115 degrees C, respectively. In addition, the relationship between d33 and Td of tetragonal side and rhombohedral side for BNLKT4-100z and BNLKT8-100z were presented. Considering both high Td and high d(33), the tetragonal side of BNLKT4-100z is thought to be the superior composition. The d(33) and T(d) of BNLKT4-28 were 135 pC/N and 218 degrees C, respectively. Moreover, this study revealed that the variation of T(d) is related to the variation of lattice distortion such as rhombohedrality 90-alpha and tetragonality c/a.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号