首页 | 本学科首页   官方微博 | 高级检索  
     


A fast and progressive algorithm for skyline queries with totally- and partially-ordered domains
Authors:Hyungsoo Jung [Author Vitae]
Affiliation:a School of Computer Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
b Division of Computer Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
Abstract:We devise a skyline algorithm that can efficiently mitigate the enormous overhead of processing millions of tuples on totally- and partially-ordered domains (henceforth, TODs and PODs). With massive datasets, existing techniques spend a significant amount of time on a dominance comparison because of both a large number of skyline points and the unprogressive method of skyline computing with PODs. (If data has high dimensionality, the situation is undoubtedly aggravated.) The progressiveness property turns out to be the key feature for solving all remaining problems. This article presents a FAST-SKY algorithm that deals successfully with these two obstacles and improves skyline query processing time strikingly, even with high-dimensional data. Progressive skyline evaluation with PODs is guaranteed by new index structures and topological sorting order. A stratification technique is adopted to index data on PODs, and we propose two new index structures: stratified R-trees (SR-trees) for low-dimensional data and stratified MinMax treaps (SM-treaps) for high-dimensional data. A fast dominance comparison is achieved by using a reporting query instead of a dominance query, and a dimensionality reduction technique. Experimental results suggest that in general cases (anti-correlated and uniform distributions) FAST-SKY is orders of magnitude faster than existing algorithms.
Keywords:Skyline computation   Optimality   Progressiveness   Partially-ordered domain
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号