首页 | 本学科首页   官方微博 | 高级检索  
     


Topology optimization of periodic cellular solids based on a superelement method
Authors:Kepeng Qiu  Matthieu Domaszewski  Dominique Chamoret
Affiliation:1. The Key Laboratory of Contemporary Design &2. Integrated Manufacturing Technology , Northwestern Polytechnical University , Xi'an, China;3. M3M Laboratory , University of Technology of Belfort–Montbeliard , Belfort, France;4. M3M Laboratory , University of Technology of Belfort–Montbeliard , Belfort, France
Abstract:It is well known that the structural performance of lightweight cellular solids depends greatly on the design of the representative volume element (RVE). In this article, an integrated topology optimization procedure is developed for the global stiffness maximization of 2D periodic and cyclic-symmetry cellular solids. A design variable linking technique and a superelement method are applied to model the structural periodicity and to reduce the computing time. In order to prevent the numerical instabilities associated with checkerboards in the design process, the quadratic perimeter constraint is used. Finally, the topology optimization problem is solved by the dual optimization algorithm. Several numerical examples are used to test the efficiency of the optimization procedure. Results show that the optimal topology of the RVE is not unique. It greatly depends on the size of the RVE. The computing efficiency can be greatly improved by means of the superelement technique. Also, for the optimal solution, the equivalent torsional rigidity has been compared with what is in the literature, to check the structural efficiency of the obtained topology. It has been observed that the current topology solution has the strongest rigidity when the same volume fraction of solid-phase materials is used.
Keywords:topology optimization  periodic cellular solids  representative volume element (RVE)  superelement method
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号