首页 | 本学科首页   官方微博 | 高级检索  
     


RAFT with Bulk and Solution Polymerization: An Approach to Mathematical Modelling and Validation
Authors:I S Altarawneh  M Srour
Affiliation:School of Chemical and Biomolecular Engineering, University of Sydney , NSW 2006, Australia
Abstract:Reversible addition fragmentation chain transfer (RAFT)-mediated polymerization is a novel technique used to impart a living character in free radical polymerization. A mathematical model accounting for the concentrations of the propagating, intermediate, dormant and dead chains is developed based on their reaction pathways. The kinetic scheme used includes initiation, propagation, pre-equilibrium, core-equilibrium and termination of the propagating radicals along with termination reactions of the carbon-centered intermediate radical. This model is combined with chain-length dependant termination model in order to account for the decreased termination rate. The model has been validated against experimental data for solution polymerization of styrene with dithiobenzoate at 80°C. The fragmentation rate coefficient was used as a model parameter and a value equal to 6×104 sec?1 was found to provide a good agreement with the experimental data. The model predictions indicate that the observed retardation can be attributed to the cross termination of the intermediate radical and, to some extent, to the RAFT effect on increasing the average termination rate coefficient. The hypothesised irreversible self termination was found to have a negligible effect on the polymerization rate. While the linear growth of the number average molecular weight along with the low polydispersity, reveal the living nature of RAFT agent and the importance of the transfer constant in controlling these properties.
Keywords:Kinetics  Mathematical modeling  Polymerization  RAFT  Reversible addition-fragmentation chain transfer
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号