首页 | 本学科首页   官方微博 | 高级检索  
     


Fourier p-elements for curved beam vibrations
Authors:A. Y. T. Leung  Bin Zhu
Affiliation:Department of Building and Construction, City University of Hong Kong, Tatchee Avenue, Hong Kong, China
Abstract:Several Fourier p-elements for in-plane vibration of thin and thick curved beams are presented. Fourier trigonometric functions are used as enriching functions to avoid the ill-conditioning problems associated with high order polynomials. The element matrices are analytically integrated in closed form. With the additional Fourier degrees of freedom, the accuracy of the computed natural frequencies is greatly improved. Furthermore, the elements with enriching shape functions can avoid membrane and shear locking. The vibration of a thin ring, whose exact solutions are available, is analyzed by the present elements. The present elements can compute accurately high natural modes as the higher mode shapes synchronize with the Fourier functions nicely. The free vibration analysis of a number of hinged circular arches with various subtended angles and the tapered cantilever arches having uniform and non-uniform cross-section is carried out as numerical examples. The condition numbers for polynomial p-elements and Fourier p-elements are compared to show the superior numerical stability of the method.
Keywords:Fourier p-elements   Curved beam   Non-uniform beam
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号