首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of carbon contamination on the sintering of alumina ceramics
Authors:Martin Michálek  Monika Michálková  Gurdial Blugan  Jakob Kuebler
Affiliation:Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for High Performance Ceramics, 8600, Dübendorf, Switzerland
Abstract:The present work aimed with the carbon contamination in alumina ceramics and its influence on sinterability of alumina in low vacuum and atmospheres of argon and nitrogen. The commercially available alumina was coated with carbon and sintered at different atmospheres to investigate the effect of carbon presence on alumina sintering behaviour. The sintering conditions were: heating/cooling rates 5 °C/min and 1.7 °C/min until the maximum temperature of 1400 °C and a dwell time of 2 h. The microstructure of the samples was investigated from fracture and surface, prior to polishing, chemical or thermal etching. The non-densified (porous) surface layer was found in the samples sintered in nitrogen and vacuum, however, sintering in argon atmosphere showed a negligible effect on the surface. The core of investigated specimens exposes a transgranular/intergranular fracture mode and is dense in all cases. In the case of vacuum sintering, the strong carbon diffusivity was also noticeable by the dark grey color of the samples. Interestingly, the formation of aluminium nitride took place during sintering of carbon coated alumina samples in a nitrogen atmosphere at 1400 °C. The thickness of the reactive porous layer was approximately 15 μm beneath the surface. Such a porous layer is inappropriate to the desired features of final ceramic products. Presented results lead to better understanding of the sintering behaviour of ceramic and to suitable selecting of the set-up by densification conditions.
Keywords:Alumina  Carbon  Microstructure  Porous surface  dense core
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号