首页 | 本学科首页   官方微博 | 高级检索  
     


Young’s modulus and thermal conductivity of model materials with convex or concave pores – from analytical predictions to numerical results
Authors:Willi Pabst  Tereza Uhlí?ová  Eva Gregorová  Andreas Wiegmann
Affiliation:1. Department of Glass and Ceramics, University of Chemistry and Technology, Prague (UCT Prague), Technická 5, Prague 6, 166 28, Czech Republic;2. Math2Market GmbH, Stiftsplatz 5, Kaiserlautern, 67655, Germany
Abstract:The effective Young’s modulus and thermal conductivity of porous materials can be rigorously bounded from above via micromechanical bounds (upper Wiener–Paul bounds and upper Hashin–Shtrikman bounds), and several model relations are commonly used as tentative approximate predictions (Maxwell-type, Coble–Kingery-type, power-law and exponential relations). Based on numerical calculations on computer-generated digital model microstructures, both periodic and random, it is shown that these model relations provide rough approximations that are more or less appropriate for microstructures with essentially convex pores, but are not suitable for microstructures with concave pores. On the other hand, the Pabst–Gregorová cross-property relation provides a very accurate (better than 0.04 relative property units) analytical prediction for the relative Young’s modulus of isotropic porous materials with isometric pores, both convex and concave, when the relative thermal conductivity is known. It is shown that this cross-property relation is the best prediction currently available for isotropic porous materials with isometric pores.
Keywords:Porous ceramics  Pore shape (convex  concave)  Microstructure  Elastic properties  Thermal conductivity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号