首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of zirconia substitution on the high-temperature transformation of the monoclinic-prime phase in yttrium tantalate
Authors:Quentin Flamant  Mary Gurak  David R Clarke
Affiliation:Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
Abstract:Amorphous yttrium tantalate, as well as solid solutions containing zirconia, transform on heating to a monoclinic-prime phase and then, with further heating, to a crystalline tetragonal (T) solid solution phase at ~1450?°C. On subsequent cooling the tetragonal phase converts by a second-order displacive transformation to a different monoclinic phase not to the monoclinic-prime phase. On subsequent reheating and cooling, the phase transformation occurs between the monoclinic (M) and tetragonal phases, and the monoclinic-prime phase cannot be recovered. The limit of zirconia solubility in both the monoclinic-prime and monoclinic phases lies between 25 and 28?m/o ZrO2, consistent with previous first-principles calculations. The monoclinic-prime phase is stable up to at least 1400?°C for 100?h for zirconia concentrations from 0 to ~60?m/o ZrO2. This temperature exceeds the temperature of the equilibrium M-T phase transformation suggesting that the monoclinic-prime phase transforms directly to the tetragonal phase by a reconstructive transformation and is unaffected by the zirconia in solid solution.
Keywords:Phase trasformations  Yttrium tantalate  Zirconia  Raman spectroscopy  X-ray diffraction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号