首页 | 本学科首页   官方微博 | 高级检索  
     

支持向量机算法用于水淹层测井识别
引用本文:程鹏飞 赵军 唐谢 付洪. 支持向量机算法用于水淹层测井识别[J]. 国外测井技术, 2007, 22(4): 29-32
作者姓名:程鹏飞 赵军 唐谢 付洪
作者单位:西南石油大学,西南石油大学,西南石油大学,西南石油大学 四川 成都 610500,四川 成都 610500,四川 成都 610500,四川 成都 610500
摘    要:支持向量机(SVM)算法是特别适合于用有限已知样本训练建模,进而预报未知样本属性的模式识别新算法。本文旨在尝试将Vapnik提出的支持向量机算法用于水淹层测井识别。本文总结了P油田水淹层的声波时差、自然电位、深感应电阻率、中感应电阻率及密度测并曲线与水淹程度的对应关系,建立了基于支持向量分类机的识别模型,并将上述参数作为训练样本的输入,油气特征作为训练样本的输出,对支持向量机进行训练。对于P油田水淹层的实际预测结果表明:支持向量机可以成为一种用于水淹层识别的有效工具。

关 键 词:水淹层  测井识别  数学模型  模式识别  支持向量机

The Support Vector Machine Algorithm Applied to Identification of Water-Flooded Zone with Well Logging
Cheng Pengfei Zhao Jun Tang Xie Southwest University of Petroleum. The Support Vector Machine Algorithm Applied to Identification of Water-Flooded Zone with Well Logging[J]. World Well Logging Technology, 2007, 22(4): 29-32
Authors:Cheng Pengfei Zhao Jun Tang Xie Southwest University of Petroleum
Affiliation:Cheng Pengfei Zhao Jun Tang Xie Southwest University of Petroleum
Abstract:Support vector machine (SVM) algorithm proposed by Vapnik is a newly developed technique for data mining.It is suitable for the data processing based on finite number of training samples,with special technique to restrict overfitting.In this work,support vector classifica- tion technique is used to make modeling on the relationship among acoustictime,SP,deep induction resistivity,medium induction resistivi- ty,density and the water-flooded grade.These parameters are taken as imput and the character of oil and gas as export.It has been used in P oilfiel and found that SVM can give efficient modeling results.
Keywords:water-flooded zone  well logging identification  mathematical model  pattern recognition  support vector machine
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号