首页 | 本学科首页   官方微博 | 高级检索  
     

基于并行学习鲁棒自适应的行驶车辆特性参数估计方法研究
引用本文:汪月英,梁峰. 基于并行学习鲁棒自适应的行驶车辆特性参数估计方法研究[J]. 计算机应用与软件, 2022, 0(2): 75-80
作者姓名:汪月英  梁峰
作者单位:1. 长春汽车工业高等专科学校;2. 第一汽车集团公司教育培训中心;3. 长春职业技术学院
基金项目:国家自然科学基金项目(31672348);
摘    要:针对车辆行驶过程中的特性参数估计问题,基于并行学习思想提出一种鲁棒自适应参数估计方法.通过低通滤波技术,设计一组系统状态和响应函数的一阶滤波变量.结合并行学习,构建特性参数估计的回归向量,并基于参数估计误差向量,设计鲁棒自适应参数更新律.以某型车辆为例,对该方法的有效性进行仿真验证.仿真结果表明,在无/有扰动情形下,该...

关 键 词:行驶车辆  特性参数  参数估计  并行学习

CONCURRENT LEARNING-BASED ROBUST ADAPTIVE PARAMETER ESTIMATION OF DRIVING VEHICLE CHARACTERISTICS
Wang Yueying,Liang Feng. CONCURRENT LEARNING-BASED ROBUST ADAPTIVE PARAMETER ESTIMATION OF DRIVING VEHICLE CHARACTERISTICS[J]. Computer Applications and Software, 2022, 0(2): 75-80
Authors:Wang Yueying  Liang Feng
Affiliation:(Changchun Automobile Industry Institute,Changchun 130013,Jilin,China;Education and Training Center,China First Automobile Group Corporation,Changchun 130013,Jilin,China;Changchun Vocational Institute of Technology,Changchun 130000,Jilin,China)
Abstract:A robust adaptive parameter estimation method is proposed based on the idea of concurrent learning for the estimation of characteristic parameters in the process of vehicle driving.A set of first-order filter variables of system state and response function were designed by using low-pass filter technology.Combining with concurrent learning,the regression vector of characteristic parameter estimation was constructed.Based on the error vector of parameter estimation,a robust adaptive parameter updating law was designed.A vehicle was taken as an example to verify the effectiveness of the proposed method.Simulation results show that the proposed method can estimate vehicle mass,viscous friction coefficient,tire rolling friction coefficient and air resistance coefficient well,and achieve effective convergence of the estimated parameters in 3 s.Compared with the traditional RLS method,it has the advantages of fast convergence speed and small error.
Keywords:Driving vehicles  Characteristics parameter  Parameter estimation  Concurrent learning
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号