首页 | 本学科首页   官方微博 | 高级检索  
     

基于VGG网络与深层字典的低剂量CT图像去噪算法
引用本文:周博超,韩雨男,桂志国,李郁峰,张权. 基于VGG网络与深层字典的低剂量CT图像去噪算法[J]. 计算机工程, 2022, 48(4): 191-196+205. DOI: 10.19678/j.issn.1000-3428.0060582
作者姓名:周博超  韩雨男  桂志国  李郁峰  张权
作者单位:中北大学 电子测试技术国家重点实验室,太原 030051;中北大学 电子测试技术国家重点实验室,太原 030051;中北大学 生物医学成像与影像大数据山西省重点实验室,太原 030051;中北大学 军民融合协同创新研究院,太原 030051
基金项目:国家自然科学基金(61671413,61801438);山西省自然科学基金(201901D111153);电子测试技术国家重点实验室开放基金(ZDSYSJ2015006);山西省应用基础研究计划项目(201901D111144);山西省青年科学基金(201801D221196);中北大学青年学术带头人项目(QX201801)。
摘    要:低剂量计算机断层扫描(LDCT)能够有效降低X射线辐射对人体健康造成的危害,已广泛应用于医学临床诊断。针对LDCT图像中存在大量的斑点噪声和条形伪影的问题,提出一种结合改进的VGG网络和深层字典的图像去噪算法,以弥补深层字典去噪能力的不足。在深层字典学习到第一层字典原子和稀疏矩阵后,通过改进的VGG网络将字典原子区分为信息原子和噪声原子,同时将稀疏矩阵中噪声原子所对应的元素设置为零,降低噪声原子对图像去噪效果的影响。实验结果表明,与K-SVD算法、正则化K-SVD算法和深层字典学习算法相比,该算法的峰值信噪比和结构相似性指数平均提高了1.4 dB和0.03,能够有效抑制LDCT图像噪声和伪影,且保留较多的边缘和细节信息。

关 键 词:低剂量计算机断层扫描  K-奇异值分解算法  VGG网络  深层字典  图像去噪
收稿时间:2021-01-14
修稿时间:2021-03-16

Low-Dose CT Image Denoising Algorithm Based on VGG Network and Deep Dictionary
ZHOU Bochao,HAN Yunan,GUI Zhiguo,LI Yufeng,ZHANG Quan. Low-Dose CT Image Denoising Algorithm Based on VGG Network and Deep Dictionary[J]. Computer Engineering, 2022, 48(4): 191-196+205. DOI: 10.19678/j.issn.1000-3428.0060582
Authors:ZHOU Bochao  HAN Yunan  GUI Zhiguo  LI Yufeng  ZHANG Quan
Affiliation:1. National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051, China;2. Shanxi Province Key Laboratory for Biomedical Imaging and Big Data, North University of China, Taiyuan 030051, China;3. Institute for Civ-Mil Integration and Collaborative Innovation, North University of China, Taiyuan 030051, China
Abstract:Low-Dose Computed Tomography (LDCT) can effectively reduce the harm caused by X-ray radiation to human health, and has been widely used in medical clinical diagnosis.Focusing on the problem of extensive speckle noise and strip artifacts in LDCT images, an image denoising algorithm combined with improved VGG network and deep dictionary is proposed to make up for the deficiency of deep dictionary denoising ability.After learning the first layer dictionary atom and sparse matrix in the deep dictionary, the dictionary atom is divided into an information atom and noise atom through the improved VGG network.The elements corresponding to the noise atom in the sparse matrix are then set to zero, to reduce the influence of the noise atom on image denoising.The experimental results show that compared with the K-SVD algorithm, the regularized K-SVD and deep dictionary learning algorithms, improve the peak signal-to-noise ratio and structural similarity index by 1.4 dB and 0.03 on average, which can effectively suppress the noise and artifacts of LDCT images while retaining more edge and detail information.
Keywords:Low-Dose Computed Tomography(LDCT)  K-singular value decomposition algorithm  VGG network  deep dictionary  image denoising  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号