首页 | 本学科首页   官方微博 | 高级检索  
     

石墨烯在防腐防污涂料中的应用进展
引用本文:陈建华,李文戈,赵远涛,钱素萍,Odhiambo J.Gerald.石墨烯在防腐防污涂料中的应用进展[J].表面技术,2019,48(6):89-97.
作者姓名:陈建华  李文戈  赵远涛  钱素萍  Odhiambo J.Gerald
作者单位:威海海洋职业学院船舶工程系,山东威海,264300;上海海事大学商船学院,上海,201306;上海奇想青晨涂料技术有限公司,上海,201505;上海海事大学商船学院,上海201306;School of Mechanical, Manufacturing & Materials Engineering, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200 Nairobi, Kenya
摘    要:石墨烯具有极好的阻隔性能、屏蔽性能及化学稳定性,其在防腐防污涂料中的应用已经被深入研究。介绍了石墨烯对防腐防污涂层性能的影响:降低水、氧气等腐蚀介质的渗透率,加强抗生物附着性,抑制微生物腐蚀。分析了石墨烯在涂料中的应用缺陷及产生原因:极强的范德华力导致石墨烯在涂料中分散性差、易团聚,高化学稳定性及疏水性导致石墨烯与成膜物质结合性差,超高的导电性导致石墨烯膜在失效时加速金属腐蚀。综述了为应对石墨烯在防腐防污涂料中的应用缺陷,国内外学者采用的主要方法:采用改性处理方法制备改性石墨烯(GO、RGO、FG)以及合成石墨烯复合颗粒(石墨烯修饰纳米粒子,即GO-Al2O3颗粒、GO-TiO2颗粒、GO-SiO2颗粒等;树脂负载石墨烯复合填料,即石墨烯/聚苯胺复合填料等)。最后展望了石墨烯及其衍生物在防腐防污涂料中的发展。

关 键 词:石墨烯  防蚀性能  防腐涂料  表面改性  防污涂料  复合颗粒
收稿时间:2018/12/13 0:00:00
修稿时间:2019/6/20 0:00:00

Application of Graphene in Anti-corrosive and Anti-fouling Coating
CHEN Jian-hu,LI Wen-ge,ZHAO Yuan-tao,QIAN Su-ping and Odhiambo J. Gerald.Application of Graphene in Anti-corrosive and Anti-fouling Coating[J].Surface Technology,2019,48(6):89-97.
Authors:CHEN Jian-hu  LI Wen-ge  ZHAO Yuan-tao  QIAN Su-ping and Odhiambo J Gerald
Affiliation:1.Department of Ship Engineering, Weihai Ocean Vocational College, Weihai 264300, China,2.Merchant Maritime College, Shanghai Maritime University, Shanghai 201306, China,2.Merchant Maritime College, Shanghai Maritime University, Shanghai 201306, China,3.Shanghai QXQC Coating Technology Co., Ltd, Shanghai 201505, China and 2.Merchant Maritime College, Shanghai Maritime University, Shanghai 201306, China; 4.School of Mechanical, Manufacturing & Materials Engineering, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200 Nairobi, Kenya
Abstract:Graphene has excellent barrier, shielding and chemical stability, the application of graphene in anti-corrosion and anti-fouling coatings has been deeply studied. Studies have shown that adding a certain amount of graphene to traditional coatings can significantly reduce the permeability to corrosive media such as water, oxygen, etc., and can enhance the bioadhesion of coatings and inhibit microbial corrosion. However, some disadvantages also appear in applications of graphene. For example, the strong van der Waals force between graphene lamellae leads to poor agglomeration and dispersion of graphene in coatings; the high chemical stability and hydrophobicity of graphene lead to poor adhesion between graphene and film-forming materials; and the superconductivity of graphene leads to the acceleration of metal corrosion when graphene film fails. In order to diminish the disadvantages of graphene during application, many methods have been explored, in which modified graphene (GO, RGO, FG) and synthetic graphene composite particles (graphene modified nanoparticles: GO-Al2O3 particles, GO-TiO2 particles, GO-SiO2 particles, etc.; resin-supported graphene composite filler: graphene/polyaniline composite filler, etc.) are main methods. Finally, the development of graphene and its derivatives in anticorrosive and antifouling coatings is prospected.
Keywords:graphene  corrosion resistance  anti-corrosion coating  surface modification  anti-fouling coatings  composite particles
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《表面技术》浏览原始摘要信息
点击此处可从《表面技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号