摘 要: | 水下物理环境复杂多变,导致获取的水下图像颜色失真、对比度低且细节模糊,影响了水下场景探测的准确性。结合衰减补偿和直方图拉伸技术,提出水下图像增强算法ACHS。根据不同颜色通道的衰减特性,设计基于衰减补偿的颜色校正方法解决水下图像颜色失真问题。将需要颜色校正的水下图像从RGB颜色模型转换到LAB颜色模型,使用引导滤波将亮度通道L分解为基础层和细节层,同时提出基于K-means聚类的双直方图增强算法用于增强基础层的对比度,通过Gamma校正突显细节层的纹理结构。在此基础上,累加亮度通道L的基础层和细节层,并将其从LAB颜色模型转换到RGB颜色模型以获取最终的增强图像。实验结果表明,与GDCP、REBE、WaterNet等算法相比,经该算法增强的水下图像可视度较高,并且具有自然的颜色和清晰的细节。
|