首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental micromechanical evaluation of strength of granular materials: Effects of particle rolling
Authors:Masanobu Oda
Affiliation:

Department of Foundation Engineering, Saitama University, Urawa, Saitama, Japan

Department of Civil Engineering, Shinshu University, Nagano, Japan

Department of Civil Engineering, Northwestern University, Evanston, IL 60201, USA

Abstract:Biaxial compression tests have been performed on assemblies of oval cross-sectional rods, in an effort to evaluate the effects of interparticle friction, particle shape, and initial fabric on the overall strength of granular materials. The variation in the spatial arrangement of the particles (fabric) and particle rolling and sliding are monitored by taking photoelastic pictures at various stages during the course of deformation. Based on this, the following conclusions are obtained. (1) Particle rolling appears to be a major microscopic deformation mechanism, especially when interparticle friction is large. (2) There are relatively few contacts at which relative sliding is dominant, and this seems to be true even when the assembly reaches the overall failure state; this observation is in contradiction to the common assumption that particle sliding is the major microscopic deformation mode. (3) During the course of deformation and up to the peak stress, new contacts are continually formed in such a manner that the contact unit normals tend to concentrate more in a direction parallel to the maximum principal compression. This concentration of unit normals seems to be closely related to the formation of new column-like load paths which carry the increasing axial stress under constant lateral force. After the peak stress, such a column-like microstructure disappears and considerable rearrangement of the load paths takes place, leading to a more diffused (homogeneous) microstructure in the critical state. (4) If a fabric tensor Fij, i, J = 1,2,3, is defined to be proportional to the volume average of the quantity mimj, where mi are the rectangular Cartesian components of a unit vector along a vector that connects the centroids of two typical contacting granules, then it appears that the overall stress with components σij tends to become coaxial with the fabric tensor Fij, as the overall deformation continues. For two-dimensional granules the result σij = greek small letter alphaOFij + βOFjkFkj (k summed) obtained by Mebrabadi, Nemat-Nasser and Oda (1980) by microchemical modeling is confirmed experimentally; greek small letter alphaO and βO are material parameters.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号