首页 | 本学科首页   官方微博 | 高级检索  
     

多目标优化算法在多分类中的应用研究
引用本文:尚荣华,胡朝旭,焦李成,白靖. 多目标优化算法在多分类中的应用研究[J]. 电子学报, 2012, 40(11): 2264-2269. DOI: 10.3969/j.issn.0372-2112.2012.11.019
作者姓名:尚荣华  胡朝旭  焦李成  白靖
作者单位:西安电子科技大学智能感知与图像理解教育部重点实验室,陕西西安,710071
基金项目:国家自然科学基金,中国博士后科学基金,陕西省自然科学基础研究计划,国家教育部博士点基金,高等学校学科创新引智计划,教育部"长江学者和创新团队发展计划"
摘    要: Cai等人用多目标粒子群算法(MOPSO)优化多目标聚类学习和分类学习框架(MSCC)的多目标问题时,种群只能得到少量的非支配解,不利于种群优化.而在此情况下,NSGA-II由于采用了Pareto排序的方法,种群中会保留大量优秀的支配解,有利于种群优化,所以本文引进了NSGA-II优化MSCC框架的多目标问题.通过对数据集的测试,验证了在NSGA-II的优化下,对于大多数测试问题,MSCC框架设计的分类器的最大分类正确率高于MOPSO优化MSCC框架的结果.进而对实验结果做了进一步分析,发现了最大正确率不随多目标优化算法的优化过程而提高的问题.

关 键 词:多分类  多目标优化  聚类  MOPSO  NSGA-II
收稿时间:2011-12-23

Research of Multi-Objective Optimization Algorithms' Application in Multi-Class Classification
SHANG Rong-hua , HU Chao-xu , JIAO Li-cheng , BAI Jing. Research of Multi-Objective Optimization Algorithms' Application in Multi-Class Classification[J]. Acta Electronica Sinica, 2012, 40(11): 2264-2269. DOI: 10.3969/j.issn.0372-2112.2012.11.019
Authors:SHANG Rong-hua    HU Chao-xu    JIAO Li-cheng    BAI Jing
Affiliation:Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China,Xidian University,Xi'an,Shaanxi 710071,China
Abstract:When Multi-objective Particle Swarm Optimization (MOPSO) optimizes the multi-objective problems of the multiobjective simultaneous learning framework (MSCC),there are only a few nondominated solutions in MOPSO population.In this case,NSGA-II can keep a lot of good dominated solutions in the population,which will help the population optimize,so this paper brought in NSGA-II as the optimization algorithm.The results of experiments show that,under the optimization of NSGA-II,MSCC framework can get better multi-class classifiers.However,dominated solutions can get better classifiers than nondominated solutions.By observing the changing curves of the maximum classification accuracy rate following with the optimization of populations,this paper found that,when dealing with most of the data sets,the maximum accuracy is not improved following the optimization of populations.
Keywords:multi-class  multi-objective optimization  cluster  MOPSO  NSGA-II
本文献已被 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号