首页 | 本学科首页   官方微博 | 高级检索  
     


Statistical Delay Fault Coverage Estimation for Synchronous Sequential Circuits
Authors:Lakshminarayana Pappu  Michael L. Bushnell  Vishwani D. Agrawal  Srinivas Mandyam-Komar
Affiliation:(1) Intel Corp., 1900 Prairie City Road, Folsom, CA, 95630;(2) CAIP Center, Rutgers University, P.O. Box 1390, Piscataway, NJ, 08855;(3) Bell Labs, Lucent Technologies, 700 Mountain Avenue, Murray Hill, NJ, 07974;(4) Mentor Graphics Corp., 1001 Ridder Park Drive, San Jose, CA, 95131
Abstract:We present a technique to statistically estimate path-delay fault coverage for synchronous sequential circuits. We perform fault-free simulation using a multivalue algebra and accumulate signal transition statistics, from which we calculate controllabilities of all signals and sensitization probabilities for all gates and flip-flops. We use a rated clock testing model where all time frames operate at the rated clock. We obtain path observabilities either by enumerating paths in the all-paths method, or by a nonenumerative method considering only the longest paths. The path-delay fault detectability is the product of observabilities of signals on paths from primary inputs (PIs) or pseudo-primary inputs (PPIs) to primary outputs (POs) or pseudo-primary outputs (PPOs), and the controllability on the corresponding PI or PPI. We use the optimistic update rule of Bose et al. for updating latches during logic simulation. When compared with exact fault simulation, the average absolute deviation in our statistical fault coverage estimation technique is 1.23% and the very worst absolute deviation was 6.59%. On average, our method accelerates delay fault coverage computation four times over an exact path delay fault simulator.
Keywords:delay test  fault simulation  path-delay faults  transition faults  statistical fault analysis
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号