首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of pressure on three catalytic partial oxidation reactions at millisecond contact times
Authors:A G Dietz III  L D Schmidt
Affiliation:(1) Department of Chemical Engineering and Materials Science, University of Minnesota, 55455 Minneapolis, MN, USA
Abstract:The effects of pressure on reactant conversion and product selectivities in three catalytic oxidation systems have been examined at pressures between 1 and > 5 atm. Reaction was sustained autothermally near adiabatic operating conditions at temperatures of sim1000°C with residence times over the noble metal catalysts between 10–4 and 10–2 s. The three systems investigated were (1) HCN synthesis over Pt-10% Rh gauze catalysts, (2) methane oxidation to synthesis gas (CO and H2) over rhodium-coated monoliths, and (3) ethane conversion to ethylene over platinum-coated monoliths. We find that selectivities in all three reactions do not change dramatically with approximately a five-fold increase in pressure. This strongly suggests that free radical homogeneous chain reactions are not significant in these processes and that they can be operated reliably above atmospheric pressure. For the synthesis of HCN over Pt-10% Rh gauzes, the selectivity to HCN can be maintained above 0.75 at pressures up to 5.5 atm. Selectivities to synthesis gas (CO and H2) from a methane-air mixture over a Rh-coated foam monolith at pressures up to 5.5 atm were maintained above 0.90. Over a Pt-coated foam monolith, the selectivity to ethylene from ethane-air and ethane-O2 mixtures was independent of pressure up to 6.5 atm and conversion rose slightly although it was necessary to maintain constant velocity and residence time over the catalyst to avoid carbon formation.This research was supported by DOE under Grant No. DE-FG02-88ER13878.
Keywords:catalytic partial oxidation  pressure  millisecond reactors
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号