首页 | 本学科首页   官方微博 | 高级检索  
     

基于HMM/VQ的认人的中等词表连续语音识别
引用本文:林道发 罗万伯. 基于HMM/VQ的认人的中等词表连续语音识别[J]. 电子学报, 1992, 20(7): 59-65
作者姓名:林道发 罗万伯
作者单位:四川大学计算中心,四川大学计算中心,四川大学计算中心 成都 610064,成都 610064,成都 610064
摘    要:本文讨论基于隐马尔可夫模型(HMM)和矢量量化(VQ)的连续语音识别方法。用这种方法,对每个单词作成一个HMM,对多个模型组合成的状态转移网络搜索其状态转移的最佳路径,从而实现不预先进行单词切分的连续语音的识别,使用有限态文法约束及其它一些改善识别性能的措施,演示系统能识别特定人的18种英语句式,150个单词,用312个话句(共有2710个单词)进行测试,识别延迟时间为发音时长的62%,发音速度平均为每秒2.32个单词,单词识准率为97.3%。

关 键 词:连续语音 识别 文法分析 HMM

Speaker-dependent Medium Vocabulary Continuous Speech Recognition Based on HMM and VQ
Lin Daofa,Luo Wanbo , Yang Jiayuan. Speaker-dependent Medium Vocabulary Continuous Speech Recognition Based on HMM and VQ[J]. Acta Electronica Sinica, 1992, 20(7): 59-65
Authors:Lin Daofa  Luo Wanbo & Yang Jiayuan
Abstract:In this paper a method of continuous speech recognition based on hidden Markov models (HMM) and vector quantization (VQ) is discussed. According to the method, forming its own HMM for each word's voice, searching the optimal path of state transition network combined by HMM' s of all words of the vocabulary, it has been realized to recog-nize continuous spoken sentences without presegmentation of each word. The recognition performance is improved by using finite-state syntactic analysis and other techniques. The de-monstration system with vocabulary of 150 words can process 18 type of English sentences. The delay from speech end to getting recognition result is nearly 0.62 times as long as the duration of speech. Tested by 312 sentences including 2710 words, the word recognition accuracy is 97.3% when the average speech speed is 2.32 words per second.
Keywords:Continuous speech recognition   Hidden Markov model   Syntactic analysis
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号