Structure and electrochemical hydrogen storage behaviors of Mg-Ce-Ni-Al-based alloys prepared by mechanical milling |
| |
Affiliation: | 1. Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010, China;2. Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081, China;1. Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081, China;2. Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010, China;1. Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010, China;2. Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081, China;1. Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou, 014010, China;2. Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing, 100081, China;3. Weishan Cisri Rare Earth Materials Co. Ltd., Jining, 277600, Shandong, China;1. Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou, 014010, China;2. Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing, 100081, China;3. Weishan Cisri-Rare Earth Materials Co., Ltd., Jining, 277600, China |
| |
Abstract: | The influences of milling time and Ce content on the electrochemical property and micro structure of asmilled Mg_(1-x)Ce_xNi_(0.9)Al_(0.1)(x=0,0.02,0.04,0.06,0.08)+50 wt%Ni alloys were investigated systematically.The as-milled alloys have an outstanding activation property.The cycle stability conspicuously grows up with milling time and Ce proportion increasing.The capacity retention rate at 100 th cycle of x=0.02 alloy augments from 47% to 63% when prolonging milling time from 5 to 30 h and it grows from55% to 82% for the 30 h milled alloy with Ce content growing from 0 to 0.08.The discharge capacity of x=0.02 alloy grows up invariably with milling time prolonging,while that of the 30 h milled alloys has the maximal value of 578.4 mAh/g with Ce content increasing.Moreover,the electrochemical kinetic properties of alloys significantly improve with milling duration extending,while they have the maximal values with Ce proportion varying. |
| |
Keywords: | Mg-based alloy Ce substituting Mg Mechanical milling Electrochemical property Rare earths |
本文献已被 CNKI ScienceDirect 等数据库收录! |
|