首页 | 本学科首页   官方微博 | 高级检索  
     


Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-beta protein
Authors:JD Harper  CM Lieber  PT Lansbury
Affiliation:Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Abstract:BACKGROUND: Amyloid plaques composed of the fibrillar form of the amyloid-beta protein (Abeta) are the defining neuropathological feature of Alzheimer's disease (AD). A detailed understanding of the time course of amyloid formation could define steps in disease progression and provide targets for therapeutic intervention. Amyloid fibrils, indistinguishable from those derived from an AD brain, can be produced in vitro using a seeded polymerization mechanism. In its simplest form, this mechanism involves a cooperative transition from monomeric Abeta to the amyloid fibril without the buildup of intermediates. Recently, however, a transient species, the Abeta amyloid protofibril, has been identified. Here, we report studies of Abeta amyloid protofibril and its seeded transition into amyloid fibrils using atomic force microscopy. RESULTS: Seeding of the protofibril-to-fibril transition was observed. Preformed fibrils, but not protofibrils, effectively seeded this transition. The assembly state of Abeta influenced the rate of seeded growth, indicating that protofibrils are fibril assembly precursors. The handedness of the helical surface morphology of fibrils depended on the chirality of Abeta. Finally, branched and partially wound fibrils were observed. CONCLUSIONS: The temporal evolution of morphologies suggests that the protofibril-to-fibril transition is nucleation-dependent and that protofibril winding is involved in that transition. Fibril unwinding and branching may be essential for the post-nucleation growth process. The protofibrillar assembly intermediate is a potential target for AD therapeutics aimed at inhibiting amyloid formation and AD diagnostics aimed at detecting presymptomatic disease.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号