首页 | 本学科首页   官方微博 | 高级检索  
     

SVM及其鲁棒性研究
引用本文:吉卫卫,谭晓阳. SVM及其鲁棒性研究[J]. 电子科技, 2012, 25(5): 97-100
作者姓名:吉卫卫  谭晓阳
作者单位:(南京航空航天大学 计算机科学与技术学院,江苏 南京 210016)
基金项目:江苏省自然科学基金资助项目
摘    要:多数人脸识别方法是利用大量正确标记的训练样本来学习精度足够高的识别模型。收集人脸图像并对其进行正确的标记会耗费大量的人力、物力,为了给已有的图像进行标注,研究者进行了大量的工作,但由于多种原因,标记的图像不一定全部正确,称这种标记错误为类别噪声。文中针对含类别噪声的人脸识别问题,指出SVM适用于这类问题,并通过分析位于不同位置的样本对分类的影响从理论上解释了SVM对噪声具有鲁棒性的原因。在SVM基础上,删除一定比例的被判定为噪声的样本后,鲁棒性能有所提高。PubFig数据集上的量实验验证了SVM及改进算法在含类别噪声学习中的有效性。

关 键 词:人脸识别  噪声学习  SVM  

Research on the Robust SVM
JI Weiwei,TAN Xiaoyang. Research on the Robust SVM[J]. Electronic Science and Technology, 2012, 25(5): 97-100
Authors:JI Weiwei  TAN Xiaoyang
Affiliation:(College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
Abstract:Most methods of face recognition use amounts of corrected labeled samples to learn recognition models with high curate.Collecting face images and labeling them will consume plenty of manpower.In order to label the possession images,researchers have done many works and have made many contributions,but due to personal reason,the labels may be not correct entirely,we call the incorrect labels class noise.The paper is aimed at face recognition with class noise,point that SVM suit for these problems and explain the reason why SVM is robust to noise according to influence of support vectors’ position to classification.Discarding certain samples which were judged as noise based on SVM improves the robustness.Amounts of experiences in PubFig dataset verify the efficiency of SVM and the improvement algorithm in noisy learning.
Keywords:face recognition  noise learning  SVM
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电子科技》浏览原始摘要信息
点击此处可从《电子科技》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号