首页 | 本学科首页   官方微博 | 高级检索  
     


Aerial robotic contact-based inspection: planning and control
Authors:Kostas Alexis  Georgios Darivianakis  Michael Burri  Roland Siegwart
Affiliation:1.ETH Zurich,Zurich,Switzerland;2.ETH Zurich,Zurich,Switzerland
Abstract:The challenge of aerial robotic contact-based inspection is the driving motivation of this paper. The problem is approached on both levels of control and path-planning by introducing algorithms and control laws that ensure optimal inspection through contact and controlled aerial robotic physical interaction. Regarding the flight and physical interaction stabilization, a hybrid model predictive control framework is proposed, based on which a typical quadrotor becomes capable of stable and active interaction, accurate trajectory tracking on environmental surfaces as well as force control. Convex optimization techniques enabled the explicit computation of such a controller which accounts for the dynamics in free-flight as well as during physical interaction, ensures the global stability of the hybrid system and provides optimal responses while respecting the physical limitations of the vehicle. Further augmentation of this scheme, allowed the incorporation of a last-resort obstacle avoidance mechanism at the control level. Relying on such a control law, a contact-based inspection planner was developed which computes the optimal route within a given set of inspection points while avoiding any obstacles or other no-fly zones on the environmental surface. Extensive experimental studies that included complex “aerial-writing” tasks, interaction with non-planar and textured surfaces, execution of multiple inspection operations and obstacle avoidance maneuvers, indicate the efficiency of the proposed methods and the potential capabilities of aerial robotic inspection through contact.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号