首页 | 本学科首页   官方微博 | 高级检索  
     


A hybrid approach for multi-objective combinatorial optimisation problems in ship design and shipping
Authors:A? Ölçer
Affiliation:Department of Naval Architecture and Marine Engineering, Universities of Glasgow and Strathclyde, Glasgow, Scotland, UK
Abstract:Numerous real-world problems relating to ship design and shipping are characterised by combinatorially explosive alternatives as well as multiple conflicting objectives and are denoted as multi-objective combinatorial optimisation (MOCO) problems. The main problem is that the solution space is very large and therefore the set of feasible solutions cannot be enumerated one by one. Current approaches to solve these problems are multi-objective metaheuristics techniques, which fall in two categories: population-based search and trajectory-based search. This paper gives an overall view for the MOCO problems in ship design and shipping where considerable emphasis is put on evolutionary computation and the evaluation of trade-off solutions. A two-stage hybrid approach is proposed for solving a particular MOCO problem in ship design, subdivision arrangement of a ROPAX vessel. In the first stage, a multi-objective genetic algorithm method is employed to approximate the set of pareto-optimal solutions through an evolutionary optimisation process. In the subsequent stage, a higher-level decision-making approach is adopted to rank these solutions from best to worst and to determine the best solution in a deterministic environment with a single decision maker.
Keywords:Multi-objective combinatorial optimisation  Genetic algorithms  Pareto-optimal concept  Multiple attribute decision making  TOPSIS
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号