首页 | 本学科首页   官方微博 | 高级检索  
     

量化关联规则在高校就业信息数据中的应用
引用本文:张晓萍,朱玉全,陈耿. 量化关联规则在高校就业信息数据中的应用[J]. 计算机技术与发展, 2013, 0(11): 199-202,212
作者姓名:张晓萍  朱玉全  陈耿
作者单位:[1]江苏大学计算机科学与通信工程学院,江苏镇江212013 [2]南京审计学院信息科学学院,江苏南京210029
基金项目:国家自然科学基金资助项目(71271117);江苏省科技型企业技术创新资金项目(BC2012201)
摘    要:针对就业信息数据中存在着大量的量化属性和分类属性等现象,提出了一种基于k-means的量化关联规则挖掘方法。该方法利用聚类算法k-means对量化属性进行合理分区,将量化属性转化为布尔型;利用改进的布尔关联规则方法对此进行关联规则挖掘,找出学生的受教育属性和就业属性之间的关联性;对挖掘出的规则进行分析和运用。就业信息数据实验证明,文中所提方法对就业信息进行挖掘是有效的、可行的。

关 键 词:数据挖掘  量化关联规则  k—means聚类算法  就业信息

Application of Quantitative Association Rules in College Employment Information Data
ZHANG Xiao-ping,ZHU Yu-quan,CHEN Geng. Application of Quantitative Association Rules in College Employment Information Data[J]. Computer Technology and Development, 2013, 0(11): 199-202,212
Authors:ZHANG Xiao-ping  ZHU Yu-quan  CHEN Geng
Affiliation:1. College of Computer Science & Telecommunications Engineering, Jiangsu University, Zhenjiang 212013, China; 2. College of Information Science,Nanjing Audit University,Nanjing 210029, China)
Abstract:In view of the phenomenon such as a lot of quantitative attributes and categorical attributes among the employment information data,proposed an algorithm for mining quantitative association rules based on k-means. This method uses k-means clustering algorithm to partition the quantitative attributes reasonably and convert quantitative attributes to Boolean type;use the improved Boolean association rules method to conduct mining association rules on this to find the correlation between student' s educational attributes and employment attributes;analyze and apply the rules. Employment information data experimental results show that the presented method is effective and feasible in mining the employment information data.
Keywords:data mining  quantitative association rules  k-means clustering algorithm  employment information
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号