首页 | 本学科首页   官方微博 | 高级检索  
     

联合改进核FCM与智能优化SVR的WSNs链路质量预测
引用本文:刘洲洲,李士宁,张筱,郭文强. 联合改进核FCM与智能优化SVR的WSNs链路质量预测[J]. 电子学报, 2018, 46(1): 90-97. DOI: 10.3969/j.issn.0372-2112.2018.01.013
作者姓名:刘洲洲  李士宁  张筱  郭文强
作者单位:1. 西安航空学院电子工程学院, 陕西西安 710077;2. 西北工业大学计算机学院, 陕西西安 710072;3. 陕西科技大学电气与信息工程学院, 陕西西安 710021
摘    要:为提高无线传感器网络(WSNs)链路质量预测精度和降低噪声影响,提出了一种联合改进核FCM与智能优化SVR (improved kernel furry c-means and intelligent support vector regression,IKFCM-ISVR)的WSNs链路质量预测方案.首先将基于紧致度和离散度的有效性指数引入核FCM方法,实现样本集聚类个数自动划分;然后采用改进核FCM方法对链路质量样本数据进行处理,获得样本聚类隶属度;在此基础上,构建群居蜘蛛优化SVR预测模型,采用基于"动态折射"学习机制的群集蜘蛛对模型参数进行优化,得到不同聚类最佳SVR参数组合;最后采用IKFCM-ISVR算法对不同实验场景下的WSNs链路数据进行预测评估.仿真结果表明,同其它预测算法相比,该算法预测精度提高了36.8~68.4%.

关 键 词:链路质量预测  核模糊C-均值聚类  支持向量回归(SVR)  群居蜘蛛优化  
收稿时间:2016-12-20

Link Quality Prediction Algorithm Based on Improved Kernel FCM and Intelligent SVR for WSNs
LIU Zhou-zhou,LI Shi-ning,ZHANG Xiao,GUO Wen-qiang. Link Quality Prediction Algorithm Based on Improved Kernel FCM and Intelligent SVR for WSNs[J]. Acta Electronica Sinica, 2018, 46(1): 90-97. DOI: 10.3969/j.issn.0372-2112.2018.01.013
Authors:LIU Zhou-zhou  LI Shi-ning  ZHANG Xiao  GUO Wen-qiang
Affiliation:1. School of Electronic Engineering, Xi'an Aeronautical University, Xi'an, Shaanxi 710077, China;2. School of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China;3. College of Electrical and Information Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
Abstract:In order to improve the prediction accuracy and reduce the noise influence of link quality for wireless sensor network (WSNs),a link quality prediction algorithm based on improved kernel FCM and intelligent SVR (IKFCM-ISVR) is proposed.Firstly,the validity index based on compactness and dispersion is introduced into the kernel FCM (KFCM) method,which realizes the automatic division of cluster number for samples.Then the improved kernel FCM method is used to process the data of link quality,and the membership degree of sample clustering is obtained.On this basis,the SVR prediction model based on social spider optimization (SSO) algorithm is constructed,and the SSO based on dynamic refraction learning mechanism is used to optimize the parameters,getting the best combination of SVR parameters for different clustering.Finally the IKFCM-ISVR algorithm is used to predict the WSNs link data in different experimental scenarios.The simulation results show that,compared with other prediction algorithms,the prediction accuracy of the algorithm is improved by 36.8~68.4%.
Keywords:link quality prediction  kernel fuzzy C-means clustering  support vector regression (SVR)  social spider optimization  
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号