首页 | 本学科首页   官方微博 | 高级检索  
     

考虑冰盖生消和冰-结构-冻土协同作用的渠道弹性地基梁模型
引用本文:葛建锐,牛永红,王正中,谭志翔,张春洋,王羿. 考虑冰盖生消和冰-结构-冻土协同作用的渠道弹性地基梁模型[J]. 水利学报, 2021, 52(2): 215-228
作者姓名:葛建锐  牛永红  王正中  谭志翔  张春洋  王羿
作者单位:西北农林科技大学 旱区寒区水工程安全研究中心 旱区农业水土工程教育部重点实验室, 陕西 杨凌 712100;中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室, 甘肃 兰州 730000;南京水利学科学研究院 岩土工程研究所, 江苏 南京 210024
基金项目:国家重点研发计划项目(2017YFC0405103);国家自然科学基金项目(U2003108,51279168);冻土工程国家重点实验室开放基金项目(SKLFSE201801);江西省教育厅科学技术研究项目(GJJ190621)
摘    要:冰-冻破坏是寒区冬季输水渠道结构破坏的主要原因,而目前尚缺乏准确的分析方法和评价准则。本文从冰盖生消过程中结冰初期、流冰期和封冻期3个阶段衬砌结构冰冻破坏机理出发,考虑在冰-结构-冻土协同作用下,基于弹性地基梁Winkler理论推导了衬砌结构的挠曲线微分方程,分别建立了3个阶段衬砌结构的冰冻破坏力学模型,并结合相应荷载组合和边界条件对模型求解获得了衬砌结构的挠度、内力和应力的解析表达。应用该模型对南水北调京石段某输水渠道进行冰冻破坏分析计算,结果表明:结冰初期、流冰期和封冻期3个阶段衬砌结构的法向冻胀位移最大值分别为10.62、13.89和5.05 cm,对应3个阶段衬砌结构的截面最大拉应力分别为3.63、 4.11和2.05 MPa,且破坏位置均在冻结区坡板的中下部,与现场监测渠道冰冻破坏分布规律吻合。据此,建议寒区冬季输水渠道控制运用中应尽量缩短结冰初期、流冰期时间,延长第3阶段稳定封冻期时间,同时应合理控制地下水位和冰盖厚度。研究结果可为寒区冬季输水渠道抗冰冻设计提供理论依据和分析方法。

关 键 词:衬砌渠道  冰盖-结构-冻土协同作用  冰-冻荷载  弹性地基Winkler理论  挠曲线微分方程
收稿时间:2020-07-23

Elastic foundation beam model of canal considering ice cover formation decaying and coupling effect between ice-structure-frozen soil
GE Jianrui,NIU Yonghong,WANG Zhengzhong,TAN Zhixiang,ZHANG Chunyang,WANG Yi. Elastic foundation beam model of canal considering ice cover formation decaying and coupling effect between ice-structure-frozen soil[J]. Journal of Hydraulic Engineering, 2021, 52(2): 215-228
Authors:GE Jianrui  NIU Yonghong  WANG Zhengzhong  TAN Zhixiang  ZHANG Chunyang  WANG Yi
Affiliation:Cold and Arid Regions Water Engineering Safety Research Center, Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education, Northwest A&F University, Yangling 712100, China;State Key Laboratory of Frozen Soil Engineering, CAS, Lanzhou 730000, China; Geotechnical Engineering, Nanjing Hydraulic Research Institute, Nanjing 210024, China
Abstract:The ice-freeze damage is the main factor for the lining structure damage of water delivery canal in cold region in winter. However, there is still a lack of accurate analytical methods and evaluation crite-ria. In this paper, study started from the mechanism of frost failure of lining structure in the process of ice cover formation and extinction of three stages which is early ice-forming period, ice float period and ice freezing period. Considering ice-soil-structure coupling effect,based on Winkler theory of elastic founda-tion beam, a differential equation of deflection line of lining structure was derived. Then it established the mechanical models of frost failure of lining structures in three stages, and the analytical expressions of the deflection,internal force and stress of the lining structure were obtained by solving the model with the com-bination of corresponding loads and boundary conditions. The model is used to analyze and calculate the freezing damage of a water conveyance channel in Jing-Shi section of the South-to-North Water transfer project, the results shown that, the maximum normal frost heave displacement of lining structure were 10.62, 13.89 and 5.05cm respectively in three stages early, and the maximum tensile stresses on the sec-tions of the lining structure corresponding in the three stages were 3.63, 4.11 and 2.05MPa respectively. The location of the failure is in the middle and lower part of the slope slab in the freezing zone,which is consistent with the distribution law of the frozen failure of the monitoring canal on site. Accordingly, it is suggested that in the control of water conveyance canals in cold areas in winter,the early ice-forming peri-od and ice float period should be shortened as much as possible,and ice freezing period should be extend-ed. At the same time, the water table and the thickness of the ice cover should be reasonably controlled. The results can provide theoretical basis and analytical methods for anti-freezing design of water convey-ance canals in cold region in winter.
Keywords:lining canal  ice-structure-frozen soil coupling effect  ice and freeing loading  Winkler elastic foundation theory  differential equation of deflection curve
本文献已被 CNKI 等数据库收录!
点击此处可从《水利学报》浏览原始摘要信息
点击此处可从《水利学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号