首页 | 本学科首页   官方微博 | 高级检索  
     

以离子液体为吸收剂的吸收式制冷循环热力学分析
引用本文:孙艳军,邸高雷,夏娟,王晓坡,金立文. 以离子液体为吸收剂的吸收式制冷循环热力学分析[J]. 化工学报, 2018, 69(Z2): 38-44. DOI: 10.11949/j.issn.0438-1157.20181093
作者姓名:孙艳军  邸高雷  夏娟  王晓坡  金立文
作者单位:1.西安交通大学人居环境与建筑工程学院, 建筑环境与可持续技术研究所, 陕西 西安 710049;2.中国重型机械研究院股份公司, 陕西 西安 710032;3.西安交通大学热流科学与工程教育部重点实验室, 陕西 西安 710049
基金项目:国家自然科学基金项目(51606148)。
摘    要:分析了R161/[hmim][Tf2N]、R32/[emim][Tf2N]、R290/[emim][BF4]三种工质对的热力学性能;采用NRTL模型对制冷剂/离子液体的汽液相平衡数据进行了关联;探讨了发生器出口温度、蒸发器出口温度及吸收温度对循环比、COP及?效率的影响。R32/[emim][Tf2N]和R161/[hmim][Tf2N]的COP相近,R290/[emim][BF4]的COP最小;在蒸发温度、吸收温度分别是5、25℃时,R32/[emim][Tf2N]系统的COP随着发生温度的变化可达到0.59以上,R290/[emim][BF4]的COP低于0.1;降低吸收温度可以扩大循环的可行温度,提高COP;蒸发温度为5℃,吸收温度从30℃降低到25℃,COP可提高1.4倍以上。

收稿时间:2018-09-27
修稿时间:2018-10-01

Thermodynamic analysis of absorption refrigeration cycles using ionic liquids as absorbents
SUN Yanjun,DI Gaolei,XIA Juan,WANG Xiaopo,JIN Liwen. Thermodynamic analysis of absorption refrigeration cycles using ionic liquids as absorbents[J]. Journal of Chemical Industry and Engineering(China), 2018, 69(Z2): 38-44. DOI: 10.11949/j.issn.0438-1157.20181093
Authors:SUN Yanjun  DI Gaolei  XIA Juan  WANG Xiaopo  JIN Liwen
Affiliation:1.Institute of Building Environment and Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China;2.China National Heavy Machinery Research Institute Co., Ltd., Xi'an 710032, Shaanxi, China;3.Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
Abstract:The thermodynamic performances of three working pairs (R161/[hmim] [Tf2N], R32/[emim] [Tf2N] and R290/[emim] [BF4]) have been analyzed. Non-Random Two-Liquid (NRTL) model was used to correlate the vapor-liquid equilibrium data of refrigerants/ionic liquids. The effects of generator outlet temperature, evaporator outlet temperature, absorption temperature on the circulation ratio, COP and exergetic coefficient of performance (ECOP) have been discussed. The COP of R32/[emim] [Tf2N] system is close to that of R161/[hmim] [Tf2N] system and the COP of R290/[emim] [BF4] is the lowest. When the evaporation temperature is 5℃ and the absorption temperature is 25℃, the COP of R32[emim] [Tf2N] system reaches more than 0.59. However, the COP of R290 is always less than 0.1. Upon reducing the absorption temperature, it can expand the feasible temperature of the cycle and improve the COP. When the evaporation temperature is 5℃ and the absorption temperature is reduced from 30℃ to 25℃, the COP increases more than 1.4 times.
Keywords:
点击此处可从《化工学报》浏览原始摘要信息
点击此处可从《化工学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号