首页 | 本学科首页   官方微博 | 高级检索  
     

基于LSTM-RNN模型的铁水硅含量预测
引用本文:李泽龙,杨春节,刘文辉,周恒,李宇轩. 基于LSTM-RNN模型的铁水硅含量预测[J]. 化工学报, 2018, 69(3): 992-997. DOI: 10.11949/j.issn.0438-1157.20171534
作者姓名:李泽龙  杨春节  刘文辉  周恒  李宇轩
作者单位:浙江大学控制科学与工程学院, 浙江 杭州 310027
基金项目:国家自然科学基金项目(61290321)。
摘    要:针对高炉炼铁是一个动态过程,具有大延迟,工况复杂的特性。采用LSTM-RNN模型进行硅含量预测,充分发挥了其处理时间序列时挖掘前后关联信息的优势。首先根据时间序列趋势及相关系数选择自变量,并采用复杂工况的实际生产数据进行验证。然后用程序自动求解最优参数进行硅含量预测。最后将LSTM-RNN模型与PLS模型及RNN模型的结果进行对比,验证该方法的优势。研究发现LSTM-RNN模型预测误差稳定,预测精度较高,比传统的统计学及神经网络方法取得了更好的预测精度。

关 键 词:预测  动态建模  神经网络  高炉炼铁  硅含量  
收稿时间:2017-09-25
修稿时间:2017-11-13

Research on hot metal Si-content prediction based on LSTM-RNN
LI Zelong,YANG Chunjie,LIU Wenhui,ZHOU Heng,LI Yuxuan. Research on hot metal Si-content prediction based on LSTM-RNN[J]. Journal of Chemical Industry and Engineering(China), 2018, 69(3): 992-997. DOI: 10.11949/j.issn.0438-1157.20171534
Authors:LI Zelong  YANG Chunjie  LIU Wenhui  ZHOU Heng  LI Yuxuan
Affiliation:College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
Abstract:The ironmaking in blast furnace, with large delay and complex conditions, is a dynamic process. The traditional methods for prediction of silicon content in hot metal are mostly based on the statistics or the simple neural networks, leading to lower accuracy. However, a model based on the long short-term memory-recurrent neural network (LSTM-RNN) is proposed to exploit the characteristics of the mutual information before and after the time series in this paper. The independent variables are selected according to the time series trend and the correlation coefficient. After that, the silicon content is predicted according to the input variables by optimizing the parameters automatically. In order to verify the constructed model, the extremely complex production data is used to compare the LSTM-RNN and simple RNN models. Remarkably, the result shows that the prediction error of LSTM-RNN model is stable and the prediction accuracy is high.
Keywords:prediction  dynamic modelling  neural network  ironmaking  silicon content  
点击此处可从《化工学报》浏览原始摘要信息
点击此处可从《化工学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号