首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度神经网络的中文命名实体识别
引用本文:张海楠,伍大勇,刘 悦,程学旗. 基于深度神经网络的中文命名实体识别[J]. 中文信息学报, 2017, 31(4): 28-35
作者姓名:张海楠  伍大勇  刘 悦  程学旗
作者单位:1. 中国科学院 计算技术研究所, 北京 100190;
2. 烟台中科网络技术研究所, 山东 烟台 264000
基金项目:国家重点基础研究发展计划(“973”计划)(2014CB340401);国家自然基金(61232010,61433014,61425016,61472401,61203298);中国科学院青年创新促进会优秀会员项目(20144310,2016102);泰山学者工程专项经费(ts201511082)
摘    要:由于中文词语缺乏明确的边界和大小写特征,单字在不同词语下的意思也不尽相同,较于英文,中文命名实体识别显得更加困难。该文利用词向量的特点,提出了一种用于深度学习框架的字词联合方法,将字特征和词特征统一地结合起来,它弥补了词特征分词错误蔓延和字典稀疏的不足,也改善了字特征因固定窗口大小导致的上下文缺失。在词特征中加入词性信息后,进一步提高了系统的性能。在1998年《人民日报》语料上的实验结果表明,该方法达到了良好的效果,在地名、人名、机构名识别任务上分别提高1.6%、8%、3%,加入词性特征的字词联合方法的F1值可以达到96.8%、94.6%、88.6%。

关 键 词:命名实体识别  深度学习  神经网络  机器学习  词性  

Chinese Named Entity Recognition Based on Deep Neural Network
ZHANG Hainan,WU Dayong,LIU Yue,CHENG Xueqi. Chinese Named Entity Recognition Based on Deep Neural Network[J]. Journal of Chinese Information Processing, 2017, 31(4): 28-35
Authors:ZHANG Hainan  WU Dayong  LIU Yue  CHENG Xueqi
Affiliation:1. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;
2. Institute of Network Technology, ICT(YANTAI), CAS, Yantai, Shandong 264000, China
Abstract:Chinese NER is challenged by the implicit word boundary, lack of capitalization, and the polysemy of a single character in different words. This paper proposes a novel character-word joint encoding method in a deep learning framework for Chinese NER. It decreases the effect of improper word segmentation and sparse word dictionary in word-only embedding, while improves the results in character-only embedding of context missing. Experiments on the corpus of the Chinese Peoples' Daily Newspaper in 1998 demonstrates a good results: at least 1.6%, 8% and 3% improvements, respectively, in location, person and organization recognition tasks compared with character or word features; and 96.8%, 94.6%, 88.6% in F1, respectively, on location, person and organization recognition tasks if integrated with part of speech feature.
Keywords:named entity recognition   deep learning   neural network   machine learning   POS  
点击此处可从《中文信息学报》浏览原始摘要信息
点击此处可从《中文信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号