首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度模型的社会新闻对用户情感影响挖掘
引用本文:孙 晓,高 飞,任福继. 基于深度模型的社会新闻对用户情感影响挖掘[J]. 中文信息学报, 2017, 31(3): 184-190
作者姓名:孙 晓  高 飞  任福继
作者单位:1. 合肥工业大学 计算机与信息学院,安徽 合肥 230009;
2. 德岛大学 工程学院,日本 7700855
基金项目:国家自然科学基金(61203315);国家高新科技发展计划(2012AA011103);安徽省科技攻关项目(1206c0805039)
摘    要:该文研究了社会新闻中影响读者情感的深层特征。使用三种文本特征选择方法,分别从一元词、二元词和主题粒度下提取文本浅层特征,使用支持向量机模型选择三种粒度下最优浅层特征并且进行分类,得到最优宏平均F1值分别为60.5%、62.1%、63.3%。引入深度信念网络模型,使用三种粒度下最优浅层特征作为输入,进一步训练和抽象得到深层特征,实验中使用深度为3的深度信念网络模型进行训练与分类,最优宏平均F1值分别为61.4%、63.5%、66.1%。实验结果表明,深层特征比浅层特征具有更多的文本语义信息,可以更好地判断社会新闻对公众情绪影响。

关 键 词:深度信念网络  限制玻尔兹曼机  情感影响  社会新闻  

Mining the Impact of Social News on the Emotions of Users Based on Deep Model
SUN Xiao,GAO Fei,REN Fuji. Mining the Impact of Social News on the Emotions of Users Based on Deep Model[J]. Journal of Chinese Information Processing, 2017, 31(3): 184-190
Authors:SUN Xiao  GAO Fei  REN Fuji
Affiliation:1. School of Computer and Information, HeFei University of Technology ,Hefei, Anhui 230009, China;
2. Faculty of Engineering, The University of Tokushima, Tokushima 7700855, Japan
Abstract:This work investigates the deep features in social news which can influence the emotions of people.Three kinds of feature compression methods are used to extract shallow features from the granularities of unigram word,bigram word and theme.The work used Support Vector Machine to select the optimal shallow features of three granularities,and the optimal F1_macro are 60.5%、62.1% and 63.3% resepectirely. The work introduced Deep Belief Network (DBN) model to train and abstract the optimal shallow features, The optimal F1_macro of DBN3 are61.4%、63.5% and 66.1% respectively.The experimental results show that the deep features abstracted by Deep Belief Network have more semantic information and better performance than shallow features in determining the influence on peoples emotions by social news.
Keywords:deep belief nets   restricted boltzmann machine   impacts on emotion   social news  
点击此处可从《中文信息学报》浏览原始摘要信息
点击此处可从《中文信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号