首页 | 本学科首页   官方微博 | 高级检索  
     


Dual ceiling protocol for real-time synchronization under preemption threshold scheduling
Authors:Saehwa Kim
Affiliation:Information Communications Engineering Major, Hankuk University of Foreign Studies, Yongin-si, Gyeonggi-do, 449-791, Republic of Korea
Abstract:The application of object-oriented design methods to real-time embedded systems is seriously hindered by the lack of existing real-time scheduling techniques that can be seamlessly integrated into these methods. Preemption threshold scheduling (PTS) enables a scalable real-time system design and thus has been suggested as a solution to this problem. However, direct adoption of PTS may lead to long priority inversion since object-oriented real-time systems require synchronization considerations in order to maintain consistent object states. In this paper, we propose the dual ceiling protocol (DCP) in order to solve this problem. While DCP exploits both priority ceilings and preemption threshold ceilings, this is not a straightforward integration of existing real-time synchronization protocols for PTS. We present the rationale for the locking conditions of DCP and show that it leads to the least blocking and response times by comparison with other real-time synchronization protocols. We also present its blocking properties and schedulability analyses. We implemented PTS and DCP in a real-time object-oriented CASE tool and present the associated experimental results, which show that the proposed protocol is a viable solution that is superior to other real-time synchronization protocols for PTS.
Keywords:Preemption threshold scheduling  Real-time synchronization protocol  Priority inversion problem  Priority inheritance protocol  Priority ceiling protocol  Real-time scheduling  Schedulability analysis  Real-time object-oriented modeling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号