Detecting single quantum dot motion with nanometer resolution for applications in cell biology |
| |
Authors: | Jonas Maxine Yao Yu So Peter T C Dewey C Forbes |
| |
Affiliation: | Dept. of Biol. Eng., MIT, Cambridge, MA; |
| |
Abstract: | Quantum dots (QDs), semiconductor particles of nanometer dimension, have emerged as excellent fluorescent analogs in tracer experiments with single molecule sensitivity for bioassays. Cell imaging greatly benefits from the remarkable optical and physical properties of these inorganic nanocrystals: QDs are much brighter and exhibit a higher resistance to photobleaching than traditional fluorophores, and their narrow emission spectrum and flexible surface chemistry make them particularly suitable for multiplex imaging. Here, we have demonstrated the achievement of a nanometer spatial resolution on the position of a single QD in a simple optomechanical instrument using a high-sensitivity low-noise detector, an intensified CCD camera. Furthermore, nanometer variations in the amplitude of a QD's sinusoidal oscillations could be quantitatively distinguished after fast Fourier transform (FFT) based data processing. As confirmed by experiments where QDs were attached to the surface of bovine aortic endothelial cells, this method can be exploited in biology to assess molecular and subcellular contributions to responses such as motility, intracellular trafficking, and mechanotransduction, with high resolution and minimal disturbance to cells |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|