首页 | 本学科首页   官方微博 | 高级检索  
     

基于Kohonen神经网络的B样条曲面重构
引用本文:范彦革,刘旭敏,陈婧. 基于Kohonen神经网络的B样条曲面重构[J]. 计算机应用, 2005, 25(9): 2018-2021. DOI: 10.3724/SP.J.1087.2005.02018
作者姓名:范彦革  刘旭敏  陈婧
作者单位:首都师范大学,信息工程学院,北京,100037;首都师范大学,信息工程学院,北京,100037;首都师范大学,信息工程学院,北京,100037
基金项目:北京市教育委员会资助项目(KM200410028013)
摘    要:探讨了三维散乱数据点的自由曲面自组织重构方法。建立了基于自组织特征映射神经网络的矩形网格重构模型及其训练算法。所建模型利用神经元对曲面散乱数据点的学习和训练来模拟曲面上点与点之间的内在关系,节点连接权向量集作为对散乱数据点集的工程近似化并重构曲面样本点的内在拓扑关系。通过该方法不仅能够对无规则散乱数据点进行逼近,并且通过该方法得到的曲面也可以作为后继曲面重构的初始曲面。仿真实验表明,所建神经网络模型可实现三维密集无规则数据点的曲面自组织重构集自压缩于一体。

关 键 词:曲面重构  B样条曲面  Kohonen神经网络  自组织特征映射
文章编号:1001-9081(2005)09-2018-04
收稿时间:2005-03-09
修稿时间:2005-03-092005-06-06

B-spline surface reconstruction based on Kohonen neural network
FAN Yan-ge,LIU Xu-min,CHEN Jing. B-spline surface reconstruction based on Kohonen neural network[J]. Journal of Computer Applications, 2005, 25(9): 2018-2021. DOI: 10.3724/SP.J.1087.2005.02018
Authors:FAN Yan-ge  LIU Xu-min  CHEN Jing
Affiliation:College of Information Engineering,Capital Normal University,Beijing 100037,China
Abstract:The approach to the freeform surface self-organizing reconstruction for the dense 3D scattered data was discussed. Based on the self-organizing feature map neural network, a rectangle mesh reconstruction approach and the training algorithm were developed. The inherent topologic relations between the scattered points on the surface were learned by the self organizing feature map neural network. The weight vectors of the neurons on the output layer of the neural network were used to approximate the scattered data points. By this approach, not only to approximate the scattered data points and the surface which is reconstructed by this method can be as base surface for further process, but also the experiment indicates that by this approach, the reconstruction of the surface and the reduce of the dense scattered data points are combined into the same process. The computer simulation result shows that this method is effective.
Keywords:surface reconstruction  B-spline surface  Kohonen neural network  Self-Organizing Feature Map(SOFM)  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号