首页 | 本学科首页   官方微博 | 高级检索  
     


Rapid thermal technologies for high-efficiency silicon solar cells
Authors:A Ebong  Y H Cho  M Hilali  A Rohatgi  D Ruby
Abstract:This paper shows that rapidly formed emitters in less than 6 min in the hot zone of a conveyor belt furnace or in 3 min in an rapid thermal processing (RTP) system, in conjunction with a screen-printed (SP) RTP Al-BSF and passivating oxide formed simultaneously in 2 min can produce very simple high-efficiency n+-p-p+ cells with no surface texturing, point contacts, or selective emitter. It is shown for the first time that an 80 Ω/□ emitter and SP Al-back surface field (BSF) formed in a high throughput belt furnace produced 19% FZ cells and greater than 17% CZ cells with photolithography (PL) contacts. Using PL contacts, we also achieved 19% efficient cells on FZ, >18% on MCZ, and 17% boron-doped CZ by emitter and SP Al-BSF formation in <10 min in a single wafer RTP system. Finally, manufacturable cells with 45 Ω/□ emitter and SP Al-BSF and Ag contacts formed in the conveyor belt furnace gave 17% efficient cells on FZ silicon. Compared to the PL cells, the SP cell gave 2% lower efficiency along with a decrease in Jsc and fill factor. This loss in performance is attributed to a combination of the poor blue response, higher series resistance and higher contact shading in the SP devices
Keywords:Rapid thermal processing  Silicon  Solar cell  Screen-printing
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号