首页 | 本学科首页   官方微博 | 高级检索  
     

基于IsoMap和MBFO-SVR的瓦斯涌出量动态预测研究
引用本文:谢国民,单敏柱,付华. 基于IsoMap和MBFO-SVR的瓦斯涌出量动态预测研究[J]. 传感技术学报, 2016, 29(7): 1115-1120. DOI: 10.3969/j.issn.1004-1699.2016.07.027
作者姓名:谢国民  单敏柱  付华
作者单位:辽宁工程技术大学电气与控制工程学院,辽宁葫芦岛,125105;辽宁工程技术大学电气与控制工程学院,辽宁葫芦岛,125105;辽宁工程技术大学电气与控制工程学院,辽宁葫芦岛,125105
基金项目:国家自然科学基金项目(51274118);辽宁省教育厅基金项目(UPRP20140464)
摘    要:为了能够实现高精度与实时性的动态预测煤矿绝对瓦斯涌出量,本文提出了等容特征映射IsoMap(Isometric feature Mapping)与改进细菌觅食优化算法MBFO(Modified Bacteria Foraging Optimization)优化支持向量回归机SVR(Support Vector Regression)相结合的预测方法。瓦斯涌出是在多种影响因子共同作用下的结果,并且这些因素之间是复杂的非线性关系,因此本文中提出采用流形学习方法IsoMap对其进行降维特征提取,该方法用测地距离(geodesic distace)取代了普遍采用的欧氏距离,有利于对高维特征内在关系的挖掘,取得了优于传统的主成分分析(PCA)的结果;将MBFO算法对SVR的相关参数进行寻优;将IsoMap分析结果输入预测模型。仿真表明,与PSO算法比较,本文提出的预测方法预测精度较高,更加有利于对瓦斯涌出量预测。

关 键 词:瓦斯涌出量  等容特征映射  细菌觅食优化算法  支持向量回归机

Based on the IsoMap with MBFO-SVR gas emission dynamic prediction research
XIE Guomin,SHAN Minzhu,FU Hua. Based on the IsoMap with MBFO-SVR gas emission dynamic prediction research[J]. Journal of Transduction Technology, 2016, 29(7): 1115-1120. DOI: 10.3969/j.issn.1004-1699.2016.07.027
Authors:XIE Guomin  SHAN Minzhu  FU Hua
Abstract:In order to realize the dynamic prediction of absolute gas emission with high precision and real time in coal mine,this paper puts forward a forecasting method by combining the Isometric feature Mapping(IsoMap)and Support Vector Regression machine(SVR)optimized byModified Bacteria Foraging algorithm(MBFO). Gas emis?sion is an emergent property resulting from various interactions,and these factors are complex nonlinear relation?ship. Therefore,using the IsoMap,a manifold learning method,is to reduce the dimension of feature extraction in this article. This methodis advantageous to excavate the high dimensioneigenvectorinner relationship by using geo?desic distanceto replace the Euclidean distanceand superior to the traditional principal component analysis(PCA);By using MBFO to optimizing parameters of SVR,results analysised by IsoMap are the input of prediction model. Simulation shows that compared with PSO algorithm,the proposed prediction method forecasting accuracy is higher, more conducive to the quantity of gas emission prediction.
Keywords:gas emission  Isometric feature mapping  bacteria foraging optimization  support vector regression ma-chine
本文献已被 万方数据 等数据库收录!
点击此处可从《传感技术学报》浏览原始摘要信息
点击此处可从《传感技术学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号