Modulation of L-type Ca channel activity by P2-purinergic agonist in cardiac cells |
| |
Authors: | F Scamps B Nilius J Alvarez G Vassort |
| |
Affiliation: | Department of Animal Sciences, University of Kentucky, Lexington 40546-0215. |
| |
Abstract: | Plant cell wall polysaccharides are primarily composed of hexose or hexose derivatives, but a significant fraction is hemicellulose which contains pentose sugars. Prevotella ruminicola B14, a predominant ruminal bacterium, simultaneously metabolized pentoses and glucose or maltose, but the organism preferentially fermented pentoses over cellobiose and preferred xylose to sucrose. Xylose and arabinose transport at either low (2 microM) or high (1 mM) substrate concentrations were observed only in the presence of sodium and if oxygen was excluded during the harvest and assay procedures. An artificial electrical potential (delta psi) or chemical gradient of sodium (delta pNa) drove transport in anaerobically prepared membrane vesicles. Because (i) transport was electrogenic, (ii) a delta pNa drove uptake, and (iii) the number of sodium binding sites was approximately 1, it appeared that P. ruminicola possessed pentose/sodium support mechanisms for the transport of arabinose and xylose at low substrate concentrations. Pentose uptake exhibited a low affinity for xylose or arabinose (> 300 microM), and transport of xylose exhibited bi-phasic kinetics which suggested that a second sodium-dependent xylose transport system was present. Little study has been made on solute transport by Prevotella (Bacteroides) species and this work represents the first use of isolated membrane vesicles from these organisms. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|