首页 | 本学科首页   官方微博 | 高级检索  
     

基于形态特征的数据流聚类方法研究
引用本文:吴学雁,黄道平. 基于形态特征的数据流聚类方法研究[J]. 计算机工程, 2011, 37(13): 46-48,51. DOI: 10.3969/j.issn.1000-3428.2011.13.013
作者姓名:吴学雁  黄道平
作者单位:1. 华南理工大学自动化科学与工程学院,广州,510640;广东工业大学管理学院,广州,510520
2. 华南理工大学自动化科学与工程学院,广州,510640
基金项目:广东省自然科学基金资助项目,广东工业大学青年基金资助项目
摘    要:在聚类过程中为保留数据的重要形态与趋势特征,提出一种基于形态特征的数据流聚类方法。在初始化阶段提取重要特征点表示序列分段,在在线更新阶段使用部分动态时间弯曲方法计算子序列距离,基于动态滑动窗口思想保证多条数据流中数据的同步,在用户触发聚类阶段提出数据流聚类方法。通过对仿真数据和实际股票数据的分析结果表明,在参数设置合理的情况下,该方法可以获得接近0.95的聚类演化精度。

关 键 词:数据流  聚类演化  数据挖掘  形态特征
收稿时间:2011-02-07

Research of Data Stream Clustering Method Based on Shape Feature
WU Xue-yan,HUANG Dao-ping. Research of Data Stream Clustering Method Based on Shape Feature[J]. Computer Engineering, 2011, 37(13): 46-48,51. DOI: 10.3969/j.issn.1000-3428.2011.13.013
Authors:WU Xue-yan  HUANG Dao-ping
Affiliation:1(1.College of Automation Science and Engineering,South China University of Technology,Guangzhou 510640,China;2.School of Management,Guangdong University of Technology,Guangzhou 510520,China)
Abstract:In order to retain shape and tend features during the clustering process,this paper proposes a data stream clustering method based on shape feature.In the initialization stage,the subsequence is represented with the important points.In the online update stage,Partial Dynamic Time Warping(PDTW) method is used to compute the distances between the subsequences and ensure the data synchronization using the dynamic sliding window.In the clustering stage triggered by the user,the data streams clustering method is proposed.Experimental results show that the shape-based clustering over data streams can get the evolution accuracy of 0.95 with the reasonable parameters
Keywords:data stream  clustering evolution  data mining  shape feature
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号