Optimal design and placement of serpentine heat exchangers for indirect heat withdrawal,inside flat plate integrated collector storage solar water heaters (ICSSWH) |
| |
Authors: | K.P. Gertzos Y.G. Caouris Th. Panidis |
| |
Affiliation: | Dept. of Mechanical Engineering and Aeronautics, University of Patras, 265 00 Patras, Greece |
| |
Abstract: | Parameters that affect the temperature at which service hot water (SHW) is offered by an immersed tube heat exchanger (HX), inside a flat plate Integrated Collector Storage Solar Water Heater (ICSSWH), are examined numerically, by means of Computational Fluid Dynamics (CFD) analysis. The storage water is not refreshed and serves for heat accumulation. Service hot water is drawn off indirectly, through an immersed serpentine heat exchanger. For the intensification of the heat transfer process, the storage water is agitated by recirculation through a pump, which goes on only when service water flows inside the heat exchanger. Three main factors, which influence the performance, are optimized: The position of the HX relative to tank walls, the HX length and the tube diameter. All three factors are explored so that to maximize the service water outlet temperature. The settling time of the optimum configuration is also computed. Various 3-D CFD models were developed using the FLUENT package. The heat transfer rate between the two circuits of the optimum configuration is maintained at high levels, leading to service water outlet temperatures by 1–7 °C lower than tank water temperatures, for the examined SHW flow rates. The settling time is retained at sufficient law values, such as 20 s. The optimal position was found to lay the HX in contact with the front and back walls of the tank, with an optimum inner tube diameter of 16 mm, while an acceptable HX length was found to be about 21.5 m. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|