首页 | 本学科首页   官方微博 | 高级检索  
     


Differential physical, rheological, and biological properties of rapid in situ gelable hydrogels composed of oxidized alginate and gelatin derived from marine or porcine sources
Authors:Huijuan Liao  Hanwei Zhang  Weiliam Chen
Affiliation:(1) Department of Biomedical Engineering, Health Science Center, State University of New York – Stony Brook, Stony Brook, NY 11794-8181, USA
Abstract:Marine derived gelatin is not known to associate with any communicable diseases to mammals and could be a reasonable substitute for gelatin derived from either bovine or porcine sources. The low melting point of marine gelatin (8°C) also offers greater formulation flexibility than mammalian derived gelatins. However, the sub-optimal physical properties of marine gelatin generally limit the interest to further develop it for biomedical applications. This study aimed at investigating the feasibility of using oxidized alginate (Oalg) as a high activity macromolecular crosslinker of marine gelatin to formulate in situ gelable hydrogels with the goal of enhancing the latter’s physical properties. The performance of Oalg/marine gelatin hydrogel was compared to Oalg/porcine gelatin hydrogel; in general, the physicomechanical properties of both hydrogels were comparable, with the hydrogels containing porcine gelatin exhibiting moderately higher mechanical strengths with shorter gelation times, smaller size pores, and higher swelling ratios. On the contrary, the biological performances of the two hydrogels were significantly difference. Cells cultured in the marine gelatin derived hydrogel grew significantly faster, with greater than 60% more cells by 7 days and they exhibited more spread-out conformations as compared those cultured in the porcine derived hydrogel. Production of ECM by cells cultured in the Oalg/marine gelatin hydrogel was up to 2.4 times greater than that of in the Oalg/porcine gelatin hydrogel. The biodegradation rate of the hydrogel formulated from marine gelatin was greater than its counterpart prepared from porcine gelatin. These differences have important implications in the biomedical applications of the two hydrogels. Huijuan Liao and Hanwei Zhang are the first authors.
Keywords:Hydrogel  Oxidized alginate  Porcine gelatin  Marine gelatin  In situ
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号