首页 | 本学科首页   官方微博 | 高级检索  
     

基于人工神经网络技术的隧道地表沉降预测
引用本文:刘红兵 王李管 张良辉 戴碧波 荆永滨. 基于人工神经网络技术的隧道地表沉降预测[J]. 矿业研究与开发, 2007, 27(2): 26-28,78
作者姓名:刘红兵 王李管 张良辉 戴碧波 荆永滨
作者单位:中南大学,资源与安全工程学院,湖南,长沙,410083;广州盾建地下工程有限公司,广东,广州,510030
摘    要:对采用人工神经网络技术预测隧道地表沉降模型中进行了研究。采用MATLAB系统开发了一个多层反向传播神经网络模型,考虑了隧道的深度、隧道的直径、地下水位、土的弹性模量、土的剪切强度、土的侧压系数、土的重度和开挖间隙对地表沉降的影响。用世界多个隧道的地表沉降数据作为样本对模型进行了训练和测试。结果表明,利用该神经网络预测的沉降值与实测值比较吻合。

关 键 词:人工神经网络  隧道工程  地表沉降
文章编号:1005-2763(2007)02-0026-03
收稿时间:2006-11-09
修稿时间:2006-11-09

Prediction of Tunneling-induced Ground Subsidence with Artificial Neural Network
Liu Hongbing,Wang Liguan,Zhang Lianghui,Dai Bibo,Jing Yongbing. Prediction of Tunneling-induced Ground Subsidence with Artificial Neural Network[J]. Mining Research and Development, 2007, 27(2): 26-28,78
Authors:Liu Hongbing  Wang Liguan  Zhang Lianghui  Dai Bibo  Jing Yongbing
Affiliation:1. School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China; 2. Guangzhou Dunjian Underground Engineering Co. Ltd, Guangzhou, Guangdong 510030, China
Abstract:This paper researches a method to predict tunneling-induced ground subsidence with artificial neural network.Based on MATLAB system,a multi-layer back propagation neural network model was developed,in which the effects of the depth from surface to the tunnel axis,tunnel diameter,groundwater level,as well as the elastic modulus,shear strength,side pressure coefficient and unit weight of soil and the space between excavated wall and lining on the ground subsidence were considered.The developed prediction model is trained and tested with the data obtained from different tunnel projects in different countries.It shows that the predicted results are in well accordance with the field observations.
Keywords:Artificial neural network   Tunnel engineering  Ground subsidence
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《矿业研究与开发》浏览原始摘要信息
点击此处可从《矿业研究与开发》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号