首页 | 本学科首页   官方微博 | 高级检索  
     

汉语大词汇量连续语音识别中混淆网络算法的研究
引用本文:吴斌,刘刚,郭军. 汉语大词汇量连续语音识别中混淆网络算法的研究[J]. 四川大学学报(工程科学版), 2007, 0(Z1)
作者姓名:吴斌  刘刚  郭军
作者单位:[1]北京邮电大学信息工程学院 [2]北京
基金项目:国家自然科学基金资助项目(60475007),教育部重点资助项目(02029),教育部跨世纪人才基金项目,863计划重点项目(2006AA010102)
摘    要:在汉语大词汇量连续语音识别中,以往基于最大后验概率准则解码得到的识别结果具有最小的句子错误率,为了得到字错误率最小的识别结果,可以采用最小贝叶斯风险解码策略,通过将识别输出的word lattice转换成为混淆网络以得到最小字错误率的识别结果。在以往混淆网络算法的基础上,根据汉语语言的特点,提出一种改进的构造混淆网络的算法。基于863测试语音库进行的实验表明,与最大后验概率识别结果和以前的两种混淆网络算法的识别结果相比,改进的混淆网络算法有效地降低汉语大词汇量连续语音识别结果的字错误率。

关 键 词:最小贝叶斯风险  Levenshtein距离  混淆网络  字错误率  语音识别

Research on Confusion Network Algorithm Based on Minimum Bayes Risk Decision Rule
WU Bin LIU Gang GUO Jun. Research on Confusion Network Algorithm Based on Minimum Bayes Risk Decision Rule[J]. Journal of Sichuan University (Engineering Science Edition), 2007, 0(Z1)
Authors:WU Bin LIU Gang GUO Jun
Abstract:In mandarin large vocabulary continuous speech recognition,the recognition result with minimum word error rate(WER) can be obtained by using minimum hayes risk(MBR) decoding strategy.One method of MBR de- coding is that the word lattice can be transformed into confusion network in order to achieve the recognition result with minimum WER.According to the characteristic of Chinese linguistics,we proposed an improved algorithm of constructing confusion network for mandarin large vocabulary continuous speech recognition.Evaluated on the Chi- nese 863 speech corpus,experimental results show that compared with the MAP one-best decoding and previously proposed two confusion network algorithms,our improved algorithm effectively reduces the WER of recognition out- put hypothesis.
Keywords:minimum bayes risk  Levenshtein distance  confusion network  WER  speech recognition
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号