首页 | 本学科首页   官方微博 | 高级检索  
     


Simulation-Based Design of a Rotatory SMA Drive
Authors:Sascha Dilthey  Horst Meier
Affiliation:1. Chair of Production Systems, Mechanical Engineering, Universitaetsstr. 150, IB 2/126, Bochum, 44780, Germany
2. Ruhr-University Bochum, Mechanical Engineering, Universit?tsstr. 150, LPS, IB2/126, Bochum, 44801, Germany
Abstract:The design and optimization of a rotatory drive powered by shape memory alloy (SMA) actuators is described in this paper. SMA actuators used in technical applications are parameterized by the use of trial-and-error methods, because there is a lack of computer-aided design tools for this active material. A numerical modeling approach was developed to design and optimize the geometry and the load and heating conditions of SMA actuators in a technical system to achieve a good dynamic and a high reliability. The shape memory effect used in most technical systems is the extrinsic two way effect (2WE). This effect can be simulated with the numerical model which was implemented in MATLAB/SIMULINK. The focus of the model is on the activation behavior of the SMA actuator, which defines its rate of heating and cooling. Different load conditions and various actuator geometries and shapes, e.g. wire or spring actuator, are simulated by the calculation of the energetic balance of the whole system. The numerical model can be used to simulate time variant heating currents in order to obtain an optimal system performance. The model was used to design a rotatory SMA-drive system, which is based on the moving concept of a wave drive gear set. In contrast to the conventional system, which is driven by an electric motor, the SMA drive consists of a strain wave gear and SMA wire actuators that are applied circularly to generate a rotatory movement. Special characteristics of this drive system are a high torque density and a high positioning accuracy.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号