Identification of an NAD+ binding site of brain glutamate dehydrogenase isoproteins by photoaffinity labeling |
| |
Authors: | SW Cho HY Yoon JY Ahn SY Choi TU Kim |
| |
Affiliation: | Department of Biochemistry, University of Ulsan College of Medicine, Seoul 138-736, Korea. swcho@www.amc.seoul.kr |
| |
Abstract: | Photoaffinity labeling with [32P]nicotinamide 2-azidoadenosine dinucleotide (2N3NAD+) was used to identify the NAD+ binding site within two types of glutamate dehydrogenase isoproteins (GDH I and GDH II) isolated from bovine brain. In the absence of photolysis, 2N3NAD+ is a substrate for the GDH isoproteins. When the enzymes were covalently modified by photolysis in the presence of saturating amounts of photoprobe, about 50% inhibition of the GDH activities was observed. Photoinsertion of probe was increased by GTP or glutarate and decreased by NAD+ or ADP. With the combination of immobilized boronate affinity chromatography and reversed-phase HPLC, photolabel-containing peptides generated with trypsin were isolated. This identified a portion of the adenine ring binding domain of GDH isoproteins as the region containing the sequence, CIAVGXSDGSIWNPDGIDPK for both GDH isoproteins, corresponding to Cys270 through Lys289 of the amino acid sequence of well known bovine liver GDH. The X indicates a position for which no phenylthiohydantoin-derivative could be assigned. The missing residue, however, can be designated as a photolabeled glutamate since the sequences including the glutamate residue in question have a complete identity with those of the other GDH species known. Photolabeling of these peptides was prevented by the presence of NAD+ during photolysis. These results demonstrate selectivity of the photoprobe for the NAD+ binding site and suggest that the peptide identified using the photoprobe is located in the NAD+ binding domain of the brain GDH isoproteins. Both amino acid sequencing and compositional analysis identified Glu275 as the site of photoinsertion. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|