首页 | 本学科首页   官方微博 | 高级检索  
     

核子类凸包样本选择方法及其SVM应用
引用本文:姜文瀚,周晓飞,杨静宇. 核子类凸包样本选择方法及其SVM应用[J]. 计算机工程, 2008, 34(16): 212-214
作者姓名:姜文瀚  周晓飞  杨静宇
作者单位:南京理工大学计算机科学与技术学院,南京,210094
摘    要:提出一种基于核函数方法的类内训练样本选择方法——核子类凸包样本选择法,并将其用于支持向量机。该样本选择方法通过迭代方法,逐一选择了那些经映射后“距离已选样本”,并将其映射、生成“凸包最远的样本”。实验结果表明,该方法选择的少量样本使支持向量机获得了较高的识别比率,减少了存储需求,提高了分类速度。

关 键 词:样本选择  凸包  支持向量机  核函数  人脸识别
修稿时间: 

Kernel Subclass Convex Hull Sample Selection Method and Its Application on SVM
JIANG Wen-han,ZHOU Xiao-fei,YANG Jing-yu. Kernel Subclass Convex Hull Sample Selection Method and Its Application on SVM[J]. Computer Engineering, 2008, 34(16): 212-214
Authors:JIANG Wen-han  ZHOU Xiao-fei  YANG Jing-yu
Affiliation:(College of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094)
Abstract:A novel intra-class sample selection method named kernel subclass convex hull sample selection algorithm is proposed and used for SVM. The algorithm is an iterative procedure based on kernel trick. At each step, only one sample furthest to the convex hull spanned by chosen samples is picked out in the feature space. Experiments show that a significant amount of training data can be removed without sacrificing the performance of SVM, while the memory requirements and the computation time of the classifiers are reduced significantly.
Keywords:sample selection  convex hull  support vector machine  kernel function  face recognition
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号