首页 | 本学科首页   官方微博 | 高级检索  
     


Caudalization by the amphibian organizer: brachyury, convergent extension and retinoic acid
Authors:T Yamada
Affiliation:Swiss Institute of Experimental Cancer Research, Epalinges.
Abstract:Caudalization, which is proposed to be one of two functions of the amphibian organizer, initiates posterior pathways of neural development in the dorsalized ectoderm. In the absence of caudalization, dorsalized ectoderm only expresses the most anterior (archencephalic) differentiation. In the presence of caudalization, dorsalized ectorderm develops various levels of posterior neural tissues, depending on the extent of caudalization. A series of induction experiments have shown that caudalization is mediated by convergent extension: cell motility that is based on directed cell intercalation, and is essential for the morphogenesis of posterior axial tissues. During amphibian development, convergent extension is first expressed all-over the mesoderm and, after mesoderm involution, it becomes localized to the posterior mid-dorsal mesoderm, which produces notochord. This expression pattern of specific down regulation of convergent extension is also followed by the expression of the brachyury homolog. Furthermore, mouse brachyury has been implicated in the regulation of tissue elongation on the one hand, and in the control of posterior differentiation on the other. These observations suggest that protein encoded by the brachyury homolog controls the expression of convergent extension in the mesoderm. The idea is fully corroborated by a genetic study of mouse brachyury, which demonstrates that the gene product produces elongation of the posterior embryonic axis. However, there exists evidence for the induction of posterior dorsal mesodermal tissues, if brachyury homolog protein is expressed in the ectoderm. In both cases the brachyury homolog contributes to caudalization. A number of other genes appear to be involved in caudalization. The most important of these is pintavallis, which contains a fork-head DNA binding domain. It is first expressed in the marginal zone. After mesoderm involution, it is present not only in the presumptive notochord, but also in the floor plate. This is in contrast to the brachyury homolog, whose expression is restricted to mesoderm. The morphogenetic effects of exogenous RA on anteroposterior specification during amphibian embryogenesis are reviewed. The agent inhibits archencephalic differentiation and enhances differentiation of deuterencephalic and trunk levels. Thus the effect of exogenous RA on morphogenesis of CNS is very similar to that of caudalization, which is proposed to occur through the normal action of the organizer. According to a detailed analysis of the effect of lithium on morphogenesis induced by the Cynops organizer, lithium has a caudalizing effect closely comparable with that of RA. Furthermore, lithium induces convergent extension in the prechordal plate, which normally does not show cell motility.(ABSTRACT TRUNCATED AT 400 WORDS)
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号