首页 | 本学科首页   官方微博 | 高级检索  
     


Biodegradable nanofibrous membrane of zein/silk fibroin by electrospinning
Authors:Chen Yao  Xinsong Li  Tangying Song  Yunhui Li  Yuepu Pu
Affiliation:1. Biomaterials and Drug Delivery Laboratories, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210018, China;2. School of Public Health, Southeast University, Nanjing 210018, China
Abstract:BACKGROUND: Electrospinning of natural polymers offers a promising approach to generate nanofibers with a similar fibrillar structure to that of native extracellular matrix. In the present work, zein/silk fibroin (SF) blends were electrospun with formic acid as solvent to fabricate bicomponent nanofibrous scaffolds for biomedical applications. RESULTS: The zein/SF electrospun nanofibers had a smaller diameter and narrower diameter distribution than pure zein nanofibers, and the average diameter gradually decreased from 265 to 230 nm with increasing SF content in the blend. The predominant presence of α‐helix zein structure and random coil form of silk I in blend fibrous membranes was confirmed from Fourier transform infrared spectral and wide‐angle X‐ray diffraction data, while conversion to the β‐sheet structure of SF was also detected. The tensile strength of the zein/SF fibrous membranes was improved as the content of SF in the blend fibers increased. A preliminary study of in vitro degradation and cytotoxicity evaluated by MTT assay indicated that biodegradable zein/SF fibrous membranes did not induce cytotoxic effects in an L929 mouse fibroblast system. CONCLUSION: Biodegradable zein/SF fibrous membranes with good mechanical properties and cytocompatibility combine the beneficial characteristics of the individual components and may be useful for biomedical applications. Copyright © 2009 Society of Chemical Industry
Keywords:zein  silk fibroin  electrospinning  nanofibers  biodegradable
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号