首页 | 本学科首页   官方微博 | 高级检索  
     


Development and application of reduced‐order modeling procedures for subsurface flow simulation
Authors:M A Cardoso  L J Durlofsky  P Sarma
Affiliation:1. Department of Energy Resources Engineering, Stanford University, Stanford, CA 94305, U.S.A.;2. Chevron Energy Technology Company, P.O. Box 6019, San Ramon, CA 94583, U.S.A.
Abstract:The optimization of subsurface flow processes is important for many applications, including oil field operations and the geological storage of carbon dioxide. These optimizations are very demanding computationally due to the large number of flow simulations that must be performed and the typically large dimension of the simulation models. In this work, reduced‐order modeling (ROM) techniques are applied to reduce the simulation time of complex large‐scale subsurface flow models. The procedures all entail proper orthogonal decomposition (POD), in which a high‐fidelity training simulation is run, solution snapshots are stored, and an eigen‐decomposition (SVD) is performed on the resulting data matrix. Additional recently developed ROM techniques are also implemented, including a snapshot clustering procedure and a missing point estimation technique to eliminate rows from the POD basis matrix. The implementation of the ROM procedures into a general‐purpose research simulator is described. Extensive flow simulations involving water injection into a geologically complex 3D oil reservoir model containing 60 000 grid blocks are presented. The various ROM techniques are assessed in terms of their ability to reproduce high‐fidelity simulation results for different well schedules and also in terms of the computational speedups they provide. The numerical solutions demonstrate that the ROM procedures can accurately reproduce the reference simulations and can provide speedups of up to an order of magnitude when compared with a high‐fidelity model simulated using an optimized solver. Copyright © 2008 John Wiley & Sons, Ltd.
Keywords:reduced‐order model  proper orthogonal decomposition  reservoir simulation  production optimization  missing point estimation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号